32

THE FA @DE PATTERN

Frequently, as your programs evolve and develop, they grow in
complexity. In fact, for all the excitement about using design patterns, these
patterns sometimes generate so many classes that it is difficult to understand
the program’ s flow. Furthermore, there may be a number of complicated
subsystems, each of which has its own complex interface.

The Facade pattern allows you to simplify this complexity by
providing a simplified interface to these subsystems. This simplification may
in some cases reduce the flexibility of the underlying classes, but usually
provides al the function needed for all but the most sophisticated users.
These users can till, of course, access the underlying classes and methods.

Fortunately, we don’t have to write a complex system to provide an
example of where a Facade can be useful. Java provides a set of classes that
connect to databases using an interface called JDBC. Y ou can connect to any
database for which the manufacturer has provided a JDBC connection class --
almost every database on he market. Some databases have direct connections
using JDBC and afew alow connection to ODBC driver using the JDBC-
ODBC bridge class.

These database classes in the java.sgl package provide an excellent
example of a set of quite low level classes that interact in a convoluted
manner, as shown below.

ResultSet
Metadata

-

ResultSet

«Q
[0))

Exetute

Database qet
Metadata -

Connection create Statement

Create

33

To connect to a database, you use an instance of the Connection
class. Then, to find out the names of the database tables and fields, you need
to get an instance of the DatabaseM etadata class from the Connection. Next,
to issue a query, you compose the SQL query string and use the Connection
to create a Statement class. By executing the statement, you obtain a
ResultSet class, and to find out the names of the column rows in that
ResultSet, you need to obtain an instance of the ResultsetM etadata class.
Thus, it can be quite difficult to juggle all of these classes and since most of
the calls to their methods throw Exceptions, the coding can be messy at least.

‘ Database ‘ ‘ resultSet ‘
ResultSet .
Metadata get ResultSet
Execute
e get Connection ereate Statement
Metadata
Create

resultSet class (note the lowercase “r”), we can build a much more usable
system.

Building the Facade Classes
Let’s consider how we connect to a database. We first must load the
database driver:

try{d ass.forNanme(driver);} //load the Bridge driver
catch (Exception e)
{System out . println(e.get Message());}

and then use the Connection class to connect to a database. We also obtain
the database metadata to find out more about the database:

try {con = Driver Manager. get Connection(url);
drma =con. get Met aDat a() ; //get the nmeta data

}
catch (Exception e)
{System out . println(e.get Message());}

If we want to list the names of the tables in the database, we then
need to call the getTables method on the database metadata class, which
returns a ResultSet object. Finally, to get the list of names we have to iterate
through that object, making sure that we obtain only user table names, and
exclude internal system tables.

Vector tnanme = new Vector();

try {
results = new resul t Set (dma. get Tabl es(cat al og,

null, "%, types));
}

catch (Exception e) {Systemout.println(e);}
whil e (results. hasMoreEl enents())
t nane. addEl enment (
resul ts. get Col umVal ue(" TABLE_NAME")) ;

This quickly becomes quite complex to manage, and we haven't even
issued any queries yet.

One smplifying assumption we can make is that the exceptions that
all these database class methods throw do not need complex handling. For the
most part, the methods will work without error unless the network connection
to the database fails. Thus, we can wrap all of these methods in classesin
which we simply print out the infrequent errors and take no further action.

This makes it possible to write two simple enclosing classes which
contain all of the significant methods of the Connection, ResultSet, Statement
and Metadata classes. These are the Database class:

Cl ass Dat abase {
publ i c Database(String driver)()//constructor
public void Open(String url, String cat);
public String[] getTabl eNanmes();
public String[] getCol umNanes(String table);
public String getColumVal ue(String table,
String col umNane) ;
public String getNextVal ue(String col utmNane) ;
public resultSet Execute(String sql);

}
and the resultSet class;

35

cl ass result Set

{
public resul tSet(ResultSet rset) /'l constructor

public String[] getMetabData();

publ i c bool ean hasMor eEl enent s() ;

public String[] nextEl enment();

public String getColumVal ue(String col unmNane) ;

public String getCol umVal ue(int i);
}

These smple classes alow usto write a program for opening a

database, displaying its table names, column names and contents, and running
asimple SQL query on the database.

The dbFrame.java program accesses a simple database containing
food prices at 3 local markets:

Eg,% Database demonstration _ O]
Tables Columns Data
FoodKey Butter
FoodPrice Cola
Stores Green heans
Hamburger
hilk
Oranges

SELECT DISTINCTROW FoodMame, StoreMame, :_i

= Run Queryl Quiti
KN L|_|

Clicking on atable name shows you the column names and clicking
on a column name shows you the contents of that column. If you click on Run
Query, it displays the food prices sorted by store for oranges:

36

Eﬁf’,ﬁﬂuew Result
FoodMame StoreMame Frice

Qranges Yillage Market 0.2800

Qranges Stop and Shop 0.2800

Qranges Waldbaum's 04700

This program starts by connecting to the database and getting a list of
the table names:

db = new Dat abase("sun. j dbc. odbc. JdbcQdbcDriver");
db. Open("j dbc: odbc: Grocery prices", null);

String tnanes[] = db. get Tabl eNanes();

| oadLi st (Tabl es, tnanes);

Then clicking on one of the lists runs a smple query for table column
names or contents:

public void itenttateChanged(ltenEvent e) {
//get list box selection
oj ect obj = e.getSource();
if (obj == Tabl es)
showCol ums() ;
if (obj == Col ums)
showDat a() ;

private void showCol ums() {
/1 di splay col umm nanes
String cnanes[] =
db. get Col umNanes(Tabl es. get Sel ectedlten());
| oadLi st (Col unmms, cnanes);
}
e R T
private void showbata() {
/1 di splay columm contents
String col nane = Col umms. get Sel ectedl ten();
String colval =
db. get Col umVal ue(Tabl es. get Sel ect edl t enq(),
col name) ;
Dat a. renoveAl | (); /lclear list box
col val = db. get Next Val ue(Col unms. get Sel ectedl ten());

whil e (col val .l ength()>0) {

37

//load list box
Dat a. add(col val) ;
col val = db. get Next Val ue(Col umms. get Sel ectedl ten());

}
}

Consequences of the Facade

The Facade pattern shields clients from complex subsystem
components and provides a simpler programming interface for the general
user. However, it does not prevent the advanced user from going to the
deeper, more complex classes when necessary.

In addition, the Facade allows you to make changes in the underlying
subsystems without requiring changes in the client code, and reduces
compilation dependencies.

