11

THE BRIDGE PATTERN

The Bridge pattern is used to separate the interface of class from its
implementation, so that either can be varied separately. At first sight, the
bridge pattern looks much like the Adapter pattern, in that a classis used to
convert one kind of interface to another. However, the intent of the Adapter
pattern is to make one or more classes' interfaces |ook the same asthat of a
particular class. The Bridge pattern is designed to separate a class' s interface
from its implementation, so that you can vary or replace the implementation
without changing the client code.

Suppose that we have a program that displays alist of productsin a
window. The simplest interface for that display isasimple JList box. But,
once a significant number of products have been sold, we may want to
display the productsin atable along with their sales figures.

Since we have just discussed the adapter pattern, you might think
immediately of the class-based adapter, where we adapt the fairly elaborate
interface of the JList to our smpler needsin this display. In ssimple programs,
thiswill work fine, but as we'll see below there are limits to that approach.

Let’s further suppose that we need to produce two kinds of displays
from our product data, a customer view that isjust the list of products we've
mentioned, and an executive view which also shows the number of units
shipped. Well display the product list in an ordinary JList box and the
executive view in a JTable table display. To smplify peripheral programming
issues, we'll just show both displays as two lists in a single window, as we
see below:

EEEThE Java Factory-- Products =] B3
Custamer view Executive view

Brass plated widgets Brass plated w...|1,000,076

Furled frammis Furled frarmmi... |75,000

Detailed rat hrushes Detailed rat br.. | 700

Zero-hased hex dumps Zero-based he...| 50,000

Anterior antelope collars Anterior antelo.. |578

Washable softwear Wyashable soff.. | 788,000
Steel-toed wing-tips Steel-toed win... | 456,666

12

At the top programming level, we just create instances of atable and

alist from classes derived from JList and Jtable but designed to parse apart
the names and the quantities of data.

pl ef t. set Layout (new Bor der Layout ());
pri ght. set Layout (new Bor der Layout ());

//add in customer view as |ist box
pl eft.add("North", new JLabel ("Custoner view'));
pl eft.add("Center", new productList(prod));

//add in execute view as table

pright.add("North", new JLabel ("Executive view'));
pright.add("Center", new product Tabl e(prod));

We derive the productList class directly from the JawtList class we

just wrote, so that the Vector containing the list of productsis the only input
to the class.

public class productlList extends Jawt Li st

publ i c productList(Vector products)

{

super (products. si ze()); //for conpatibility
for (int i =0; i < products.size(); i++)
{

//take each string apart and keep only
//the product nanes, discarding the quantities
String s = (String)products. el ement At (i);

//separate gty from name

int index = s.indexOh("--");
i f(index > 0)

add(s. substring(0, index));
el se

add(s);

Building a Bridge

Now suppose that we need to make some changes in the way these

lists display the data. For example, you might want to have the products
displayed in alphabetical order. In order to continue with this approach, you'd
need to either modify or subclass both of theselist classes. This can quickly
get to be a maintenance nightmare, especially if more than two such displays
eventually are needed. So rather than deriving new classes whenever we need

13

to change these displays further, let’s build a single bridge that does this work
for us:

Simple list

Data values Bridge

Table list

We want the bridge class to return an appropriate visual component
so we'll make it akind of scroll pane class:

public class |istBridge extends Jscroll Pane

When we design a bridge class, we have to decide how the bridge
will determine which of the several classesit isto instantiate. It could decide
based on the values or quantity of data to be displayed, or it could decide
based on some simple constants. Here we define the two constants inside the
listBridge class:

static public final int TABLE = 1, LIST = 2;

We'll keep the main program constructor much the same, replacing
specialized classes with two calls to the constructor of our new listBridge
class:

pl eft.add("North", new JLabel ("Custoner view'));
pl eft.add("Center",
new | i stBridge(prod, listBridge.LIST));

//add in execute view as table
pright.add("North", new JLabel ("Executive view'));
pright.add("Center",
new | i stBridge(prod, listBridge. TABLE));

Our constructor for the listBridge classis then smply

public listBridge(Vector v, int table_type)
{

Vector sort = sortVector(v); //sort the vector

14

if (table_type == LIST)
get Vi ewport (). add(makeLi st (sort)); //make table

if (table_type == TABLE)
get Vi ewport (). add(nmakeTabl e(sort)); //make |ist

}
The important difference in our bridge classis that we can use the
Jrable and JList class directly without modification and thus can put any

adapting interface computations in the data models that construct the data for
thelist and table.

private JLi st makeLi st (Vector v)
return new JLi st (new BridgeListData(v));

private JTabl e makeTabl e(Vect or v)
return new JTabl e(new prodModel (v));
}

The resulting sorted display is shown below:

E"g’,i' The Java Factory-- Products H=]
Customer view Executive view

Anterior antelope collars
Brass plated widgets
Detailed rat hrushes
Furled frammis
Steel-toed wing-tips
Washable softwear
Zero-based hex dumps

Anterior antelo... [578
Brass plated w._|1,000 076
Detailed rathr... | 700
Furled frammi... | 75,000
Steel-toed win... |456 BEG
Washable soft.. (789,000
Fero-based he. (80,000

Consequences of the Bridge Pattern

1. The Bridge pattern is intended to keep the interface to your client
program constant while allowing you to change the actual kind of class
you display or use. This can prevent you from recompiling a complicated
set of user interface modules, and only require that you recompile the
bridge itself and the actual end display class.

2. You can extend the implementation class and the bridge class separately,
and usually without much interaction with each other.

15

3. You can hide implementation details from the client program much more
easily.

