
11

THE BRIDGE PATTERN

The Bridge pattern is used to separate the interface of class from its
implementation, so that either can be varied separately. At first sight, the
bridge pattern looks much like the Adapter pattern, in that a class is used to
convert one kind of interface to another. However, the intent of the Adapter
pattern is to make one or more classes’ interfaces look the same as that of a
particular class. The Bridge pattern is designed to separate a class’s interface
from its implementation, so that you can vary or replace the implementation
without changing the client code.

Suppose that we have a program that displays a list of products in a
window. The simplest interface for that display is a simple JList box. But,
once a significant number of products have been sold, we may want to
display the products in a table along with their sales figures.

Since we have just discussed the adapter pattern, you might think
immediately of the class-based adapter, where we adapt the fairly elaborate
interface of the JList to our simpler needs in this display. In simple programs,
this will work fine, but as we’ll see below there are limits to that approach.

Let’s further suppose that we need to produce two kinds of displays
from our product data, a customer view that is just the list of products we’ve
mentioned, and an executive view which also shows the number of units
shipped. Well display the product list in an ordinary JList box and the
executive view in a JTable table display. To simplify peripheral programming
issues, we’ll just show both displays as two lists in a single window, as we
see below:

12

At the top programming level, we just create instances of a table and
a list from classes derived from JList and Jtable but designed to parse apart
the names and the quantities of data.

 pleft.setLayout(new BorderLayout());
 pright.setLayout(new BorderLayout());

 //add in customer view as list box
 pleft.add("North", new JLabel("Customer view"));
 pleft.add("Center", new productList(prod));

 //add in execute view as table
 pright.add("North", new JLabel("Executive view"));
 pright.add("Center", new productTable(prod));

We derive the productList class directly from the JawtList class we
just wrote, so that the Vector containing the list of products is the only input
to the class.

public class productList extends JawtList
{
 public productList(Vector products)
 {
 super(products.size()); //for compatibility
 for (int i = 0; i < products.size(); i++)
 {
 //take each string apart and keep only
 //the product names, discarding the quantities
 String s = (String)products.elementAt(i);

 //separate qty from name
 int index = s.indexOf("--");
 if(index > 0)

 add(s.substring(0, index));
 else
 add(s);
 }
 }
}

Building a Bridge
 Now suppose that we need to make some changes in the way these

lists display the data. For example, you might want to have the products
displayed in alphabetical order. In order to continue with this approach, you’d
need to either modify or subclass both of these list classes. This can quickly
get to be a maintenance nightmare, especially if more than two such displays
eventually are needed. So rather than deriving new classes whenever we need

13

to change these displays further, let’s build a single bridge that does this work
for us:

Data values

Simple list

Table list

Bridge

We want the bridge class to return an appropriate visual component
so we’ll make it a kind of scroll pane class:

public class listBridge extends JscrollPane

When we design a bridge class, we have to decide how the bridge
will determine which of the several classes it is to instantiate. It could decide
based on the values or quantity of data to be displayed, or it could decide
based on some simple constants. Here we define the two constants inside the
listBridge class:

static public final int TABLE = 1, LIST = 2;

We’ll keep the main program constructor much the same, replacing
specialized classes with two calls to the constructor of our new listBridge
class:

pleft.add("North", new JLabel("Customer view"));
pleft.add("Center",

new listBridge(prod, listBridge.LIST));

 //add in execute view as table
pright.add("North", new JLabel("Executive view"));
pright.add("Center",

new listBridge(prod, listBridge.TABLE));

Our constructor for the listBridge class is then simply

public listBridge(Vector v, int table_type)
 {
 Vector sort = sortVector(v); //sort the vector

14

 if (table_type == LIST)
 getViewport().add(makeList(sort)); //make table

 if (table_type == TABLE)
 getViewport().add(makeTable(sort)); //make list

 }

The important difference in our bridge class is that we can use the
JTable and JList class directly without modification and thus can put any
adapting interface computations in the data models that construct the data for
the list and table.

private JList makeList(Vector v) {
 return new JList(new BridgeListData(v));
 }
//---------------------------------
private JTable makeTable(Vector v) {
 return new JTable(new prodModel(v));
 }

The resulting sorted display is shown below:

Consequences of the Bridge Pattern
1. The Bridge pattern is intended to keep the interface to your client

program constant while allowing you to change the actual kind of class
you display or use. This can prevent you from recompiling a complicated
set of user interface modules, and only require that you recompile the
bridge itself and the actual end display class.

2. You can extend the implementation class and the bridge class separately,
and usually without much interaction with each other.

15

3. You can hide implementation details from the client program much more
easily.

