THE ADAPTER PATTERN

The Adapter pattern is used to convert the programming interface of
one classinto that of another. We use adapters whenever we want unrelated
classes to work together in a single program. The concept of an adapter is
thus pretty smple; we write a class that has the desired interface and then
make it communicate with the class that has a different interface.

There are two ways to do this: by inheritance, and by object
composition. In the first case, we derive a new class from the nonconforming
one and add the methods we need to make the new derived class match the
desired interface. The other way isto include the origina class inside the new
one and create the methods to trand ate calls within the new class. These two
approaches, termed class adapters and object adapters are both fairly easy to
implement in Java.

Moving Data between Lists

Let’s consider a simple Java program that allows you to enter names
into alist, and then select some of those names to be transferred to another
list. Our initia list consists of a class roster and the second list, those who
will be doing advanced work.

E:‘zf’,gTwn Lists H= &3
I Insenl Barry Pye

AnnalGreen Y =

Charlie Horse L

Darren Steal

Evan Essent

Fred Farkle

=-- Femaove |

In this ssimple program, you enter names into the top entry field and
click on Insert to move the names into the left-hand list box. Then, to move
names to the right-hand list box, you click on them, and then click on Add.
To remove a name from the right hand list box, click on it and then on
Remove. This moves the name back to the left-hand list.

Thisisavery smple program to writein Java 1.1. It consists of a
GUI creation constructor and an actionListener routine for the three buttons:

public void actionPerfornmed(Acti onEvent e)
{
Button b = (Button)e.getSource();
i f(b == Add)
addName() ;
if(b == MoveRi ght)
noveNaneRi ght () ;
if(b == MovelLeft)
noveNaneLeft ();

The button action routines are then ssimply
private voi d addNane()

{
if (txt.getText().length() > 0)
leftList.add(txt.getText());
txt.setText ("");
}
}
e E TP
private void noveNaneRi ght ()
String sel[] = leftList.getSelectedltens();
if (sel '= null)
{

rightList.add(sel[0]);
| eftList.renmove(sel[0]);

public void noveNaneLeft ()

String sel[] = rightList.getSelectedltens();
if (sel '= null)

{
leftList.add(sel[0]);
ri ghtList.renmove(sel[0]);

}
}
This program is called TwoL.ist.java on your CD-ROM.

Using the JFC JList Class

Thisis al quite straightforward, but suppose you would like to
rewrite the program using the Java Foundation Classes (JFC or “Swing”).
Most of the methods you use for creating and manipulating the user interface
remain the same. However, the JFC JList classis markedly different than the
AWT Ligt class. In fact, because the JList class was designed to represent far
more complex kinds of lists, there are virtually no methods in common
between the classes:

awt List class JFC JList class
add(String);
remove(String)
String[] getSelecteditems() Object[] getSelectedValues()

Both classes have quite a number of other methods and almost none
of them are closely correlated. However, since we have aready written the
program once, and make use of two different list boxes, writing an adapter to
make the JList class look like the List class seems a sensible solution to our
problem.

The JList classis awindow container which has an array, vector or
other ListModel class associated with it. It isthis ListModel that actually
contains and manipulates the data. Further, the JList class does not contain a
scroll bar, but instead relies on being inserted in the viewport of the
JScrollPane class. Datain the JList class and its associated ListModel are not
limited to strings, but may be aimost any kind of objects, as long as you
provide the cell drawing routine for them. This makes it possible to have list
boxes with pictures illustrating each choice in the list.

In our case, we are only going to create a class that emulates the List
class, and that in this simple case, needs only the three methods we showed in
the table above.

We can define the needed methods as an interface and then make sure
that the class we create implements those methods:

public interface awtList {
public void add(String s);
public void remove(String s);
public String[] getSelectedltens()

Interfaces are important in Java, because Java does not allow multiple
inheritance as C++ does. Thus, by using the implements keyword, the class
can take on methods and the appearance of being a class of either type.

The Object Adapter

In the object adapter approach, we create a class that contains a JList
class but which implements the methods of the awtList interface above. This
isapretty good choice here, because the outer container for a JList is not the
list element at all, but the JScrollPane that encloses it.

So, our basic JawtList class looks like this:

public class Jaw Li st extends JScrol |l Pane
i mpl enents awt Li st

{
private JList |istWndow,
private JListData |istContents;
e T TP P
public Jaw List(int rows) {
listContents = new JListData();
i st Wndow = new JList(listContents);
get Viewport ().add(listWndow);
}
e T T P
public void add(String s) {
| i st Cont ents. addEl ement (s) ;
}
e T T P
public void remove(String s) {
| i st Contents.renoveEl enent (s);
}
e R T TP P
public String[] getSel ectedltens()
oj ect[] obj = listWndow. get Sel ect edVal ues();
String[] s = new String[obj.length];
for (int i =0; i<obj.length; i++)
s[i] = obj[i].toString();
return s;
}
}

Note, however, that the actual data handling takes place in the
JistData class. This classis derived from the AbstractListModel, which
defines the following methods:

addListDatal istener(l) Add alistener for changesin the
data.

removel istDatal istener(l) Remove a listener

fireContentsChanged(obj, minmax) | Call this after any change occurs
between the two indexes min and
max

firel nterval Added(obj,min,max) Call this after any data has been
added between min and max.

firelnterval Removed(obj, min, max) | Call this after any data has been
removed between min and max.

The three fire methods are the communication path between the data
stored in the ListModel and the actual displayed list data. Firing them causes
the displayed list to be updated.

In this case, the addElement, removeElement methods are all that are
needed, although you could imagine a number of other useful methods. Each
time we add data to the data vector, we call the firel nterval Added method to
tell the list display to refresh that area of the displayed list.

cl ass JLi st Data extends AbstractLi st Model

{
private Vector data;
e R TP P
public JListData() {
data = new Vector();
}
e R TP P
public void addEl enent (String s)
{
dat a. addEl enent (s) ;
firelnterval Added(thi s, data.size()-1,
dat a. si ze());
}
e R TP P
public void renmoveEl ement (String s) {
dat a. renoveEl ement (s) ;
firelnterval Removed(this, 0, data.size());
}
}

The Class Adapter

In Java, the class adapter approach isn’t al that different. If we create
aclass JawtClassList that is derived from JList, then we have to create a
JScrollPane in our main program’s constructor:

| eftList = new Jcl assAwt Li st (15);
JScrol | Pane | sp = new JScrol | Pane();
pLeft.add("Center", |sp);
| sp. get Vi ewport (). add(l eftList);

and so forth.

The class-based adapter is much the same, except that some of the
methods now refer to the enclosing class instead of an encapsulated class:

public class Jcl assAwt Li st extends JLi st
i mpl enents aw Li st

{
private JListData |istContents;

public JclassAwt Li st (int rows)

listContents = new JListData();
set Mbdel (li st Contents);
set Prot ot ypeCel | Val ue(" Abcdef g Hi j krmop") ;

}

There are some differences between the List and the adapted JList
classthat are not so easy to adapt, however. The List class constructor allows
you to specify the length of the list in lines. Thereis no way to specify this
directly in the JList class. Y ou can compute the preferred size of the
enclosing JScrollPane class based on the font size of the JList, but depending
on the layout manager, this may not be honored exactly.

Y ou will find the example class JawtClassList, caled by
JTwoClassList on your example CD-ROM.

There are also some differences between the class and the object
adapter approaches, although they are less significant than in C++.

The Class adapter

Won't work when we want to adapt a class and al of its
subclasses, since you define the class it derives from when you
createit.

L ets the adapter change some of the adapted class's methods but
till allows the others to be used unchanged.

An Object adapter

Could allow subclasses to be adapted by simply passing them in
as part of a constructor.

Requires that you specifically bring any of the adapted object’s
methods to the surface that you wish to make available.

Two Way Adapters

The two-way adapter is a clever concept that allows an object to be
viewed by different classes as being either of type awtList or atype JList.
Thisis most easily carried out using a class adapter, since al of the methods
of the base class are automatically available to the derived class. However,
this can only work if you do not override any of the base class s methods with
ones that behave differently. Asit happens, our JawtClassList classis an ideal
two-way adapter, because the two classes have no methods in common. Y ou
can refer to the awtList methods or to the JList methods equally conveniently.

Pluggable Adapters

A pluggable adapter is one that adapts dynamically to one of severad
classes. Of course, the adapter can only adapt to classes it can recognize, and
usually the adapter decides which classit is adapting based on differing
constructors or setParameter methods.

Java has yet another way for adapters to recognize which of several
classes it must adapt to: reflection. Y ou can use reflection to discover the
names of public methods and their parameters for any class. For example, for
any arbitrary object you can use the getClass() method to obtain its class and
the getMethods() method to obtain an array of the method names.

JList list = new JList();

Met hod[] methods = list.getd ass().getMethods();
//print out nethods
for (int i =0; i < nethods.length; i++) {

Systemout. println(nethods[i].getName());
/lprint out parameter types

Class cl[] = methods[i]. getParaneterTypes();
for(int j=0; j < cl.length; j++)
Systemout.printin(cl[j].toString());

}
A “method dump” like the one produced by the code shown above

can generate avery large list of methods, and it is easier if you know the
name of the method you are looking for and simply want to find out which
arguments that method requires. From that method signature, you can then
deduce the adapting you need to carry out.

However, since Javais a strongly typed language, it is more likely
that you would simply invoke the adapter using one of several constructors,
where each constructor is tailored for a specific class that needs adapting.

Adaptersin Java

In abroad sense, there are already a number of adapters built into the
Javalanguage. In this case, the Java adapters serve to simplify an
unnecessarily complicated event interface. One of the most commonly used
of these Java adapters is the WindowAdapter class.

One of the inconveniences of Java is that windows do not close
automatically when you click on the Close button or window Exit menu item.
The general solution to this problem is to have your main Frame window
implement the WindowL istener interface, leaving all of the Window events
empty except for windowClosing.

public void mai nFrane extends Frame
i mpl enents W ndowLi st ener
{

public void mai nFranme()
addW ndowLi st ener (t hi s); /lframe |listens

//for wi ndow events
}

public void wi ndowd osi ng(WndowEvent wEvt) {
Systemexit(0); /lexit on Systemexit box clicked

public void w ndowd osed(W ndowEvent wEvt){}
public void wi ndowOpened(W ndowEvent wEvt){}
public void wi ndow coni fi ed(W ndowEvent wEvt){}
public void wi ndowDei coni fi ed(W ndowEvent wEvt){}
public void wi ndowAct i vat ed(W ndowEvent wEvt){}
public voi d wi ndowDeacti vat ed(W ndowEvent wEvt){}
}
Asyou can seg, thisis awkward and hard to read. The

WindowAdapter classis provided to simplify this procedure. This class
contains empty implementations of all seven of the above WindowEvents.
Y ou need then only override the windowClosing event and insert the
appropriate exit code.

One such simple program is shown below:

/lillustrates using the WndowAdapter class
public class C oser extends Frane {
public C oser() {
W ndAp wi ndap = new W ndAp();
addW ndowLi st ener (wi ndap) ;

10

set Si ze(new Di nensi on(100, 100));
setVisible(true);

}

static public void main(String argv[]) {
new C oser();

}

/I make an extended wi ndow adapter which
//closes the frame when the closing event is received
cl ass WndAp extends W ndowAdapter {
public void wi ndowd osi ng(WndowEvent e) {
System exi t (0);
}

Y ou can, however, make a much more compact, but less readable
version of the same code by using an anonymous inner class:

//create wi ndow |istener for w ndow cl ose click
addW ndowLi st ener (new W ndowAdapt er ()

{
public void wi ndowd osi ng(W ndowEvent e)

{Systemexit(0);}

1)

Adapters like these are common in Java when a simple class can be
used to encapsulate a number of events. They include ComponentAdapter,
ContainerAdapter, FocusAdapter, KeyAdapter, MouseAdapter, and
MouseM otionAdapter.

