29

THE PROTOTYPE PATTERN

The Protoype pattern is used when creating an instance of aclassis very
time-consuming or complex in some way. Then, rather than creating more
instances, you make copies of the original instance, modifying them as

appropriate.

Prototypes can also be used whenever you need classes that differ only in the
type of processing they offer, for example in parsing of strings representing
numbersin different radixes. In this sense, the prototype is nearly the same as
the Examplar pattern described by Coplien [1992].

Let’s consider the case of an extensive database where you need to make a
number of queriesto construct an answer. Once you have this answer as a
table or ResultSet, you might like to manipulate it to produce other answers
without issuing additional queries.

In a case like one we have been working on, we'll consider a database of a
large number of swimmersin aleague or statewide organization. Each
swimmer swims several strokes and distances throughout a season. The “best
times’ for swimmers are tabulated by age group, and many swimmers will
have birthdays and fall into new age groups within a single season. Thus the
guery to determine which swimmers did the best in their age group that
season is dependent on the date of each meet and on each swimmer’s
birthday. The computational cost of assembling thistable of timesis therefore
fairly high.

Once we have a class containing this table, sorted by sex, we could imagine
wanting to examine this information sorted just by time, or by actual age
rather than by age group. It would not be sensible to recompute these data,
and we don't want to destroy the original data order, so some sort of copy of
the data object is desirable.

Cloning in Java
Y ou can make a copy of any Java object using the clone method.
Jobj j1 = (Jobj)j0.clone();

The clone method always returns an object of type Object. Y ou must cast it to
the actual type of the object you are cloning. There are three other significant
restrictions on the clone method:

30

1. Itisaprotected method and can only be called from within the same class
or the module that contains that class.

2. You can only clone objects which are declared to implement the
Cloneable interface.

3. Objects that cannot be cloned throw the CloneNotSupported Exception.

This suggests packaging the actual clone method inside the class where it can
access the real clone method:

public class Swi nData i npl enents C oneabl e

public Object clone()

{
try{
return super.clone();
cat ch(Exception e)
{System out . println(e.get Message());
return null;
}
}

This also has the advantage of encapsulating the try-catch block inside the
public clone method. Note that if you declare this public method to have the
same name “clone,” it must be of type Object, since the interna protected
method has that signature. Y ou could, however, change the name and do the
typecasting within the method instead of forcing it onto the user:

public Swi nData cl oneMe()

{
try{
return (Sw nDat a) super. cl one();
}
cat ch(Exception e)
{System out. println(e.get Message());
return null;
}
}

Y ou can also make specia cloning procedures that change the data or
processing methods in the cloned class, based on arguments you pass to the
clone method. In this case, method names such as make are probably more
descriptive and suitable.

31

Using the Prototype

Now let’s write a smple program that reads data from a database and then
clones the resulting object. In our example program, Swiminfo, we just read
these data from afile, but the origina data were derived from alarge database
as we discussed above.

Then we create a class called Swimmer that holds one name, club name, sex
and time

cl ass Swi mer

{ String nang;
int age;
String club;
float tine;
bool ean femal e;

and a class called SwimData that maintains a vector of the Swimmers we read
in from the database.

public class Swi nData i npl enents C oneabl e
{
Vect or sSw nmers;
public Sw nData(String fil enane)
{
String s ;
SW nmer s new Vector();
//open data file
InputFile f = new InputFile(filenane);

s= f.readLi ne(); //read in and parse each line
while(s !'= null)
{

swi nmer s. addEl ement (new Swi mmer (s)) ;
s= f.readLine();

f.close();

We also provide a getSvimmer method in SwimData and getName, getAge
and getTime methods in the Swimmer class. Once we' ve read the data into
Swiminfo, we can display it in alist box.

swLi st. renoveAl |l (); /lclear Ilist

for (int i =0; i < sdata.size(); i++)

{
sw = sdat a. get Swi nmer (i) ;
swLi st. addl t en(sw. get Nane() +" "+sw. get Tinme());

}

Then, when the user clicks on the Clone button, we'll clone this class and sort
the data differently in the new class. Again, we clone the data because

32

creating a new class instance would be much slower, and we want to keep the

datain both forms.

sxdata = (Swi nDat a) sdat a. cl one();
sxdata.sortByTime(); //re-sort
clonelList.renoveAl | (); //clear |ist

/I now di spl ay sorted val ues from cl one
for(int i=0; i< sxdata.size(); i++)
{
sw = sxdat a. get Swi nmer (i) ;
cl oneLi st. addl t en(sw. get Name() +" “+sw. get Ti me());

In the original class, the names are sorted by sex and then by time, whilein

the cloned class, they are sorted only by time. In the figure below, we see the
simple user interface that allows usto display the original data on the left and

the sorted data in the cloned class on the right:

&a Prototype example |_ (O] x]
Kristen Frast 26.31 Luke Mester 24 88
Kimherly Watcke 27.37 i kristen Frost 26.31
Jachn Carey 27.53 Kirmnberly Watcke 27 .37
tegan Crapster 27.68 Jaclyn Carey 27.53
Faitlyn Ament 28.2 Megan Crapster 2768
Jackie Rogers 28.68 Stephen Cosme 27.89
Erin McLaughlin 28.8 kaithyn Ament 28 2
Emily Ferrier 28.85 i Jeffrey Sudbury 28.24
Aurora Lee 28.88 ﬂl ErnestVerrico 28 46
Kate Isselee 28.91 Jackie Rogers 28,68
Luke Mester 24.88 David Liebovitz 28.78
Stephen Cosme 27.89 Erin McLaughlin 28.8
Jeffrey Sudbury 28,24 RFyan Rynazrewski 28.83
Ermesterrico 28.46 Emmily Ferrier 28.85
David Liebovitz 28.78 Quit I Aurora Lee 2888

Ryan Rynazewski 28.83 kate Isseles 28.91
tatthew Donch 28.85 Matthew Donch 28.95
Christopher Prus 29.02 Christopher Prus 29.02
Chatrles Baker 29.06 Charles Baker 29.06
Matthew Sweitzer 28.1 Matthew Sweitzer 29.1

The left-hand list box is loaded when the program starts and the right-hand

list box isloaded when you click on the Clone button. Now, let’s click on the

Refresh button to reload the left-hand list box from the original data

33

24 Prototype example [_ (O] x]
Luke Mester 24 .88 Luke Mester 24.88

Kristen Frost 26,31 M Kristen Frost 26.31
Kimberly Watcke 27.37 Kimberly VWatcke 27.27
Jaclyn Carey 27.53 Jaclyn Carey 27,53

Megan Crapster 27.68 Megan Crapster 27 .68
Stephen Cosme 27.89 Stephen Cosme 27.89

Kaitlyn Ament 28.2 Kaitlyn Ament 28.2
Jeffrey Sudbury 28.24 Jeffrey Sudbury 28.24
Ernesterrico 28 46 ErnestWerrico 28.46

Jackie Rogers 28.68 Jackie Rogers 28.68
David Liebovitz 28.78 David Liehovitz 28.78
Erin McLaughlin 28.8 Erin McLaughlin 28.8
Ryan Rynazewski 28.83 Ryan Rynazewski 28.83
Emily Ferrier 28.85 Emily Ferrier 28.85
Aurora Lee 28.88 Qwit l Aurora Lee 28.88

late Isselee 2891 kate I5selee 2897
Matthews Donch 28.95 Matthew Donch 28.95
Christopher Prus 29.02 Christopher Prus 29.02
Charles Baker 29.06 Charles Baker 29.08
Matth e Sweitzer 291 Matthew Sweitzer 291

Why have the names in the left-hand list box aso been re-sorted?. This
occurs in Java because the clone method is a shallow copy of the original
class. In other words, the references to the data objects are copies, but they
refer to the same underlying data. Thus, any operation we perform on the
copied data will aso occur on the original datain the Prototype class.

In some cases, this shallow copy may be acceptable, but if you want to make
adeep copy of the data, there isaclever trick using the serializable interface.
A classis said to be serializable if you can write it out as a stream of bytes
and read those bytes back in to reconstruct the class. Thisis how Java remote
method invocation (RMI) is implemented. However, if we declare both the
Swimmer and SwimData classes as Serializable,

public class Sw nData
i mpl enents Coneable, Serializable

class Swimmer inplenents Serializable

we can write the bytes to an output stream and reread them to create a
complete data copy of that instance of aclass:

public oject deepd one()
{

try{
Byt eArrayQut put Stream b = new Byt eArrayQut put Streamn() ;

Obj ect Qut put Stream out = new Obj ect Qut put Strean(b);
out.witeQoject(this);
Byt eArrayl nput Stream bl n = new

Byt eArrayl nput St rean(b. t oByteArray());

oj ect I nput Stream oi = new Obj ect | nput Strean(bl n);
return (oi.readObject());

}
catch (Exception e)

{ Systemout.println("exception:"+e.getMessage());
return null;
}

}

This deepClone method allows us to copy an instance of a class of any
complexity and have data that is completely independent between the two
copies. The program Swimlnfo on the accompanying CD-ROM contains the
complete code for this example, showing both cloning methods.

Consequences of the Prototype Pattern

Using the Prototype pattern, you can add and remove classes at run time by
cloning them as needed. Y ou can revise the internal data representation of a
class at run time based on program conditions. Y ou can also specify new
objects at run time without creating a proliferation of classes and inheritance
structures.

One difficulty in implementing the Prototype pattern in Javaisthat if the
classes dready exist, you may not be able to change them to add the required
clone or deepClone methods. The deepClone method can be particularly
difficult if al of the class objects contained in a class cannot be declared to
implement Serializable. In addition, classes that have circular references to
other classes cannot really be cloned.

Like the registry of Singletons discussed above, you can also create aregistry
of Prototype classes which can be cloned and ask the registry object for alist
of possible prototypes. Y ou may be able to clone an existing class rather than
writing one from scratch.

Note that every class that you might use as a prototype must itself be
instantiated (perhaps at some expense) in order for you to use a Prototype
Registry. This can be a performance drawback.

Finally, the idea of having prototype classes to copy implies that you have
sufficient access to the data or methods in these classes to change them after
cloning. This may require adding data access methods to these prototype
classes so that you can modify the data once you have cloned the class.

