
2

THE FACTORY PATTERN

One type of pattern that we see again and again in OO programs is the
Factory pattern or class. A Factory pattern is one that returns an instance of
one of several possible classes depending on the data provided to it. Usually
all of the classes it returns have a common parent class and common methods,
but each of them performs a task differently and is optimized for different
kinds of data.

How a Factory Works
To understand a Factory pattern, let’s look at the Factory diagram below.

Factory

x

xy xz

getClass

abc

x

In this figure, x is a base class and classes xy and xz are derived from it. The
Factory is a class that decides which of these subclasses to return depending
on the arguments you give it. On the right, we define a getClass method to be
one that passes in some value abc, and that returns some instance of the class
x. Which one it returns doesn't matter to the programmer since they all have
the same methods, but different implementations. How it decides which one
to return is entirely up to the factory. It could be some very complex function
but it is often quite simple.

Sample Code
Let's consider a simple case where we could use a Factory class. Suppose we
have an entry form and we want to allow the user to enter his name either as
“firstname lastname” or as “lastname, firstname”. We’ll make the further
simplifying assumption that we will always be able to decide the name order
by whether there is a comma between the last and first name.

3

This is a pretty simple sort of decision to make, and you could make it with a
simple if statement in a single class, but let’s use it here to illustrate how a
factory works and what it can produce. We’ll start by defining a simple base
class that takes a String and splits it (somehow) into two names:

class Namer {
//a simple class to take a string apart into two names
 protected String last; //store last name here
 protected String first; //store first name here

 public String getFirst() {
 return first; //return first name
 }
 public String getLast() {
 return last; //return last name
 }
}

In this base class we don’t actually do anything, but we do provide
implementations of the getFirst and getLast methods. We’ll store the split
first and last names in the Strings first and last, and, since the derived classes
will need access to these variables, we’ll make them protected.

The Two Derived Classes
Now we can write two very simple derived classes that split the name into
two parts in the constructor. In the FirstFirst class, we assume that everything
before the last space is part of the first name:

class FirstFirst extends Namer { //split first last
 public FirstFirst(String s) {
 int i = s.lastIndexOf(" "); //find sep space
 if (i > 0) {
 //left is first name
 first = s.substring(0, i).trim();

 //right is last name
 last =s.substring(i+1).trim();

 }
else {
 first = “”; // put all in last name

 last = s; // if no space
 }
 }
}

And, in the LastFirst class, we assume that a comma delimits the last name.
In both classes, we also provide error recovery in case the space or comma
does not exist.

4

class LastFirst extends Namer { //split last, first
 public LastFirst(String s) {
 int i = s.indexOf(","); //find comma
 if (i > 0) {
 //left is last name

 last = s.substring(0, i).trim();
 //right is first name
 first = s.substring(i + 1).trim();

 }
 else {
 last = s; // put all in last name
 first = ""; // if no comma
 }
 }
}

Building the Factory
Now our Factory class is extremely simple. We just test for the existence of a
comma and then return an instance of one class or the other:

class NameFactory {
//returns an instance of LastFirst or FirstFirst
//depending on whether a comma is found
 public Namer getNamer(String entry) {
 int i = entry.indexOf(","); //comma determines name
order
 if (i>0)
 return new LastFirst(entry); //return one class
 else
 return new FirstFirst(entry); //or the other
 }
}

Using the Factory
Let’s see how we put this together.

We have constructed a simple Java user interface that allows you to enter the
names in either order and see the two names separately displayed. You can
see this program below.

5

You type in a name and then click on the Compute button, and the divided
name appears in the text fields below. The crux of this program is the
compute method that fetches the text, obtains an instance of a Namer class
and displays the results.

In our constructor for the program, we initialize an instance of the factory
class with

NameFactory nfactory = new NameFactory();

Then, when we process the button action event, we call the computeName
method, which calls the getNamer factory method and then calls the first and
last name methods of the class instance it returns:

private void computeName() {
 //send the text to the factory and get a class back
 namer = nfactory.getNamer(entryField.getText());

 //compute the first and last names
 //using the returned class
 txFirstName.setText(namer.getFirst());
 txLastName.setText(namer.getLast());
 }
And that’s the fundamental principle of Factory patterns. You create an
abstraction which decides which of several possible classes to return and
returns one. Then you call the methods of that class instance without ever

6

knowing which derived class you are actually using. This approach keeps the
issues of data dependence separated from the classes’ useful methods. You
will find the complete code for Namer.java on the example CD-ROM.

Factory Patterns in Math Computation
Most people who use Factory patterns tend to think of them as tools for
simplifying tangled programming classes. But it is perfectly possible to use
them in programs that simply perform mathematical computations. For
example, in the Fast Fourier Transform (FFT), you evaluate the following
four equations repeatedly for a large number of point pairs over many passes
through the array you are transforming. Because of the way the graphs of
these computations are drawn, these equations constitute one instance of the
FFT “butterfly.” These are shown as Equations 1--4.

(1)

 (2)

(3)

(4)

However, there are a number of times during each pass through the data
where the angle y is zero. In this case, your complex math evaluation reduces
to Equations (5-8):

(5)

(6)

(7)

(8)

So it is not unreasonable to package this computation in a couple of classes
doing the simple or the expensive computation depending on the angle y.
We’ll start by creating a Complex class that allows us to manipulate real and
imaginary number pairs:

class Complex {
 float real;
 float imag;
}

It also will have appropriate get and set functions.

)cos()sin(

)cos()sin(

)sin()cos(

)sin()cos(

221
'
2

221
'
1

221
'
2

221
'
1

yIyRII

yIyRII

yIyRRR

yIyRRR

−−=
++=
+−=
−+=

21
'
2

21
'
1

21
'
2

21
'
1

III

III

RRR

RRR

−=
+=
−=
+=

7

Then we’ll create our Butterfly class as an abstract class that we’ll fill in with
specific descendants:

abstract class Butterfly {
 float y;
 public Butterfly() {
 }
 public Butterfly(float angle) {
 y = angle;
 }
 abstract public void Execute(Complex x, Complex y);
}
Our two actual classes for carrying out the math are called addButterfly and
trigButterfly. They implement the computations shown in equations (1--4)
and (5--8) above.

class addButterfly extends Butterfly {
 float oldr1, oldi1;

 public addButterfly(float angle) {
 }
 public void Execute(Complex xi, Complex xj) {
 oldr1 = xi.getReal();
 oldi1 = xi.getImag();
 xi.setReal(oldr1 + xj.getReal()); //add and subtract
 xj.setReal(oldr1 - xj.getReal());
 xi.setImag(oldi1 + xj.getImag());
 xj.setImag(oldi1 - xj.getImag());
 }
}

and for the trigonometic version:

class trigButterfly extends Butterfly {
 float y;
 float oldr1, oldi1;
 float cosy, siny;
 float r2cosy, r2siny, i2cosy, i2siny;

 public trigButterfly(float angle) {
 y = angle;
 cosy = (float) Math.cos(y);//precompute sine and cosine
 siny = (float)Math.sin(y);

 }
 public void Execute(Complex xi, Complex xj) {
 oldr1 = xi.getReal(); //multiply by cos and sin
 oldi1 = xi.getImag();
 r2cosy = xj.getReal() * cosy;
 r2siny = xj.getReal() * siny;
 i2cosy = xj.getImag()*cosy;

8

 i2siny = xj.getImag()*siny;
 xi.setReal(oldr1 + r2cosy +i2siny); //store sums
 xi.setImag(oldi1 - r2siny +i2cosy);
 xj.setReal(oldr1 - r2cosy - i2siny);
 xj.setImag(oldi1 + r2siny - i2cosy);
 }
}

Finally, we can make a simple factory class that decides which class instance
to return. Since we are making Butterflies, we’ll call our Factory a Cocoon:

class Cocoon {
 public Butterfly getButterfly(float y) {
 if (y !=0)
 return new trigButterfly(y); //get multiply class
 else
 return new addButterfly(y); //get add/sub class
 }
}
You will find the complete FFT.java program on the example CDROM.

When to Use a Factory Pattern
You should consider using a Factory pattern when

• A class can’t anticipate which kind of class of objects it must create.

• A class uses its subclasses to specify which objects it creates.

• You want to localize the knowledge of which class gets created.

There are several similar variations on the factory pattern to recognize.

1. The base class is abstract and the pattern must return a complete working
class.

2. The base class contains default methods and is only subclassed for cases
where the default methods are insufficient.

3. Parameters are passed to the factory telling it which of several class types
to return. In this case the classes may share the same method names but
may do something quite different.

Thought Questions
1. Consider a personal checkbook management program like Quicken. It

manages several bank accounts and investments and can handle your bill

