10

THE ABSTRACT FACTORY PATTERN

The Abstract Factory pattern is one level of abstraction higher than the
factory pattern. Y ou can use this pattern when you want to return one of
several related classes of objects, each of which can return several different
objects on request. In other words, the Abstract Factory is a factory object
that returns one of several factories.

One classic application of the abstract factory is the case where your system
needs to support multiple “look-and-feel” user interfaces, such as Windows-
9x, Motif or Macintosh. You tell the factory that you want your program to
look like Windows and it returns a GUI factory which returns Windows-like
objects. Then when you request specific objects such as buttons, check boxes
and windows, the GUI factory returns Windows instances of these visual
interface components.

In Java 1.2 the pluggable look-and-feel classes accomplish this at the system
level so that instances of the visual interface components are returned
correctly once the type of look-and-fedl is selected by the program. Here we
find the name of the current windowing system and then tell the PLAF
abstract factory to generate the correct objects for us.

String | af = U Manager . get Syst enlLookAndFeel C assNane() ;

try {
U Manager . set LookAndFeel (| af);

catch (Unsupport edLookAndFeel Excepti on exc)
{Systemerr.println("UnsupportedL&-: " + laf);}
catch (Exception exc)
{Systemerr.printin("Error loading " + | af);

}

A GardenMaker Factory

Let’s consider a simple example where you might want to use the abstract
factory at the application level.

Suppose you are writing a program to plan the layout of gardens. These could
be annua gardens, vegetable gardens or perennial gardens. However, no
matter which kind of garden you are planning, you want to ask the same
guestions:

1. What are good border plants?

11

2. What are good center plants?
3. What plants do well in partial shade?

...and probably many other plant questions that we' Il omit in thissimple
example.

We want a base Garden class that can answer these questions:

public abstract class Garden {
public abstract Plant getCenter();
public abstract Plant getBorder();
public abstract Pl ant get Shade();

}
where our simple Plant object just contains and returns the plant name:

public class Plant {
String nane;
public Plant(String pnane) {
name = pnang; // save name

}

public String get Name() {
return namne;

}

}

Now in areal system, each type of garden would probably consult an
elaborate database of plant information. In our simple example we'll return
one kind of each plant. So, for example, for the vegetable garden we simply
write

public class Vegi eGarden extends Garden {

public Plant get Shade() {
return new Pl ant ("Broccoli");

}
public Plant getCenter() {
return new Pl ant ("Corn");

}

public Plant getBorder() {
return new Pl ant (" Peas")

}

}
Now we have a series of Garden objects, each of which returns one of severd

Plant objects. We can easily construct our abstract factory to return one of
these Garden objects based on the string it is given as an argument:

cl ass Gar denMaker

// Abstract Factory which returns one of three gardens
private Garden gd;

12

public Garden getGarden(String gtype)
{
gd = new Vegi eGarden(); /I def aul t
i f(gtype.equal s("Perennial"))
gd = new Perenni al Garden();
i f(gtype. equal s("Annual "))
gd = new Annual Garden();
return gd;

}

}
This simple factory system can be used along with a more complex user
interface to select the garden and begin planning it as shown below:

Eg_ﬁ Garden planner [_ O]
Garden type Astilbe .
Dicentrum
O Yegetable
Sedum

Centrali Elnrderl ‘Shade

(" Annual -
Qwit |

& Perennial

How the User Interface Works

This simple interface consists of two parts: the left side, that selects the
garden type and the right side, that selects the plant category. When you click
on one of the garden types, this actuates the MakeGarden Abstract Factory.
This returns atype of garden that depends on the name of the text of the radio
button caption.

public void itenttateChanged(ltenEvent e)

Checkbox ck = (Checkbox) e. get Source();
//get a garden type based on | abel of radio button

garden = new Gar denMaker (). get Gar den(ck. get Label ());
/1 Clear nanes of plants in display

shadePl ant=""; centerPlant=""; borderPlant = ""

13

gar denPl ot . repai nt () ; /1 di splay enpty garden
}

Then when a user clicks on one of the plant type buttons, the plant type is
returned and the name of that plant displayed:

public void actionPerforned(Acti onEvent e) {
oj ect obj = e.getSource();//get button type
if(obj == Center) /'I'and choose pl ant type

set Center();

i f(obj == Border)
set Border () ;

i f(obj == Shade)
set Shade() ;

if(obj == Quit)
System exi t (0);

}
[
private void setCenter() {
if (garden !'= null)
center Pl ant = garden. get Center (). getNane();
gar denPl ot . repai nt () ;
}
private void setBorder () {
if (garden !'= null)
bor der Pl ant = garden. get Border (). get Nane() ;
gar denPl ot . repai nt () ;
}

private void set Shade() {
if (garden !'= null)
shadePl ant = gar den. get Shade() . get Nanme() ;
gar denPl ot . repai nt () ;

}
The key to displaying the plant names is the garden plot panel, where they are
drawn.

cl ass GardenPanel extends Panel

public void paint (G aphics g)

{
/] get panel size
Di mension sz = getSize();
//draw tree shadow
g. set Col or (Col or. i ght Gray);
g.fillArc(O, O, 80, 80,0, 360);

/I draw pl ant nanes, sone nmay be bl ank strings

g. set Col or (Col or. bl ack) ;
g.drawRect (0,0, sz.width-1, sz.height-1);
g.drawstri ng(centerPl ant, 100, 50);
g.drawsStri ng(borderPlant, 75, 120);
g. drawst ri ng(shadePl ant, 10, 40);

14

}
} }
Y ou will find the complete code for Gardene.java on the example CDROM.

Consequences of Abstract Factory

One of the main purposes of the Abstract Factory isthat it isolates the
concrete classes that are generated. The actual class names of these classes
are hidden in the factory and need not be known at the client level at all.

Because of the isolation of classes, you can change or interchange these
product class families fregly. Further, since you generate only one kind of
concrete class, this system keeps you for inadvertently using classes from
different families of products. However, it is some effort to add new class
families, since you need to define new, unambiguous conditions that cause
such a new family of classes to be returned.

While all of the classes that the Abstract Factory generates have the same
base class, there is nothing to prevent some derived classes from having
additional methods that differ from the methods of other classes. For example
a BonsaiGarden class might have a Height or WateringFrequency method that
is not present in other classes. This presents the same problem as occur in any
derived classes-- you don't know whether you can call a class method unless
you know whether the derived classis one that allows those methods. This
problem has the same two solutions asin any similar case: you can either
define al of the methods in the base class, even if they don’t always have a
actual function, or you can test to see which kind of class you have:

if (gard instanceof Bonsai Garden)
int h = gard. Hei ght ();

Thought Questions

If you are writing a program to track investments, such as stocks, bonds,
metal futures, derivatives, etc., how might you use an Abstract Factory?

