
17

THE TEMPLATE PATTERN

Whenever you write a parent class where you leave one or more of the
methods to be implemented by derived classes, you are in essence using the
Template pattern. The Template pattern formalizes the idea of defining an
algorithm in a class, but leaving some of the details to be implemented in
subclasses. In other words, if your base class is an abstract class, as often
happens in these design patterns, you are using a simple form of the Template
pattern.

Motivation
Templates are so fundamental, you have probably used them dozens

of times without even thinking about it. The idea behind the Template pattern
is that some parts of an algorithm are well defined and can be implemented in
the base class, while other parts may have several implementations and are
best left to derived classes. Another main theme is recognizing that there are
some basic parts of a class that can be factored out and put in a base class so
that they do not need to be repeated in several subclasses.

For example, in developing the PlotPanel classes we used in the
Strategy pattern examples, we discovered that in plotting both line graphs and
bar charts we needed similar code to scale the data and compute the x-and y
pixel positions.

public class PlotPanel extends JPanel
{
 float xfactor, yfactor;
 int xpmin, ypmin, xpmax, ypmax;
 float minX, maxX, minY, maxY;
 float x[], y[];
 Color color;
//--
 public void setBounds(float minx, float miny,

float maxx, float maxy) {
 minX=minx; maxX= maxx;
 minY=miny; maxY = maxy;
 }
//--
 public void plot(float[] xp, float[] yp, Color c) {
 x = xp; //copy in the arrays
 y = yp;
 color = c; //and color

 //compute bounds and scaling factors

18

 int w = getWidth();
 int h = getHeight();
 xfactor = (0.9f * w) / (maxX - minX);
 yfactor = (0.9f * h)/ (maxY - minY);

 xpmin = (int)(0.05f * w); ypmin = (int)(0.05f * h);
 xpmax = w - xpmin; ypmax = h - ypmin;
 repaint(); //this causes the actual plot
 }
//--------------------------------------
protected int calcx(float xp) {
 return (int)((xp-minX) * xfactor + xpmin);
}
 protected int calcy(float yp) {
 int ypnt = (int)((yp-minY) * yfactor);
 return ypmax - ypnt;
 }
}

Thus, these methods all belonged in a base PlotPanel class without
any actual plotting capabilities. Note that the plot method sets up all the
scaling constants and just calls repaint. The actual paint method is deferred to
the derived classes. Since the JPanel class always has a paint method, we
don’t want to declare it as an abstract method in the base class, but we do
need to override it in the derived classes.

Kinds of Methods in a Template Class
A Template has four kinds of methods that you can make use of in

derive classes:

1. Complete methods that carry out some basic function that all the
subclasses will want to use, such as calcx and calcy in the above
example. These are called Concrete methods.

2. Methods that are not filled in at all and must be implemented in
derived classes. In Java , you would declare these as abstract
methods, and that is how they are referred to in the pattern
description.

3. Methods that contain a default implementation of some
operations, but which may be overridden in derived classes.
These are called Hook methods. Of course this is somewhat
arbitrary, because in Java you can override any public or
protected method in the derived class, but Hook methods are
intended to be overridden, while Concrete methods are not.

19

4. Finally, a Template class may contain methods which themselves
call any combination of abstract, hook and concrete methods.
These methods are not intended to be overridden, but describe an
algorithm without actually implementing its details. Design
Patterns refers to these as Template methods.

Sample Code
Let’s consider a simple program for drawing triangles on a screen.

We’ll start with an abstract Triangle class, and then derive some special
triangle types from it.

Abstract
triangle

Isoceles
triangle

Standard
triangle

Right triangle

Our abstract Triangle class illustrates the Template pattern:

public abstract class Triangle
{
 Point p1, p2, p3;
 //---------------------------------------
 public Triangle(Point a, Point b, Point c)
 {
 //save
 p1 = a; p2 = b; p3 = c;
 }
 //---------------------------------------
 public void draw(Graphics g)
 {
 //This routine draws a general triangle
 drawLine(g, p1, p2);
 Point current = draw2ndLine(g, p2, p3);
 closeTriangle(g, current);
 }
 //---------------------------------------
 public void drawLine(Graphics g, Point a, Point b)

20

 {
 g.drawLine(a.x, a.y, b.x, b.y);
 }
 //---------------------------------------
 //this routine has to be implemented
 //for each triangle type.

 abstract public Point
draw2ndLine(Graphics g, Point a, Point b);

 //---------------------------------------
 public void closeTriangle(Graphics g, Point c)
 {
 //draw back to first point
 g.drawLine(c.x, c.y, p1.x, p1.y);
 }
}

This Triangle class saves the coordinates of three lines, but the draw
routine draws only the first and the last lines. The all important draw2ndLine
method that draws a line to the third point is left as an abstract method. That
way the derived class can move the third point to create the kind of rectangle
you wish to draw.

This is a general example of a class using the Template pattern. The
draw method calls two concrete base class methods and one abstract method
that must be overridden in any concrete class derived from Triangle.

Another very similar way to implement the case triangle class is to
include default code for the draw2ndLine method.

public Point draw2ndLine(Graphics g, Point a, Point b)
{
 g.drawLine(a.x, a.y, b.x, b.y);
 return b;
}

In this case, the draw2ndLine method becomes a Hook method that can be
overridden for other classes.

Drawing a Standard Triangle
To draw a general triangle with no restrictions on its shape, we

simple implement the draw2ndLine method in a derived stdTriangle class:

public class stdTriangle extends Triangle
{
 public stdTriangle(Point a, Point b, Point c)
 {
 super(a, b, c);
 }
 public Point draw2ndLine(Graphics g, Point a, Point b)

21

 {
 g.drawLine(a.x, a.y, b.x, b.y);
 return b;
 }
}

Drawing an Isoceles Triangle
This class computes a new third data point that will make the two

sides equal and length and saves that new point inside the class.

public class IsocelesTriangle extends Triangle
{
 Point newc;
 int newcx, newcy;
 int incr;

 public IsocelesTriangle(Point a, Point b, Point c)
 {
 super(a, b, c);
 double dx1 = b.x - a.x; double dy1 = b.y - a.y;
 double dx2 = c.x - b.x; double dy2 = c.y - b.y;

 double side1 = calcSide(dx1, dy1);
 double side2 = calcSide(dx2, dy2);

 if (side2 < side1)
 incr = -1;
 else
 incr = 1;

 double slope = dy2 / dx2;
 double intercept = c.y - slope* c.x;

 //move point c so that this is an isoceles triangle
 newcx = c.x; newcy = c.y;
 while(Math.abs(side1 - side2) > 1) {
 newcx += incr; //iterate a pixel at a time
 newcy = (int)(slope* newcx + intercept);
 dx2 = newcx - b.x;
 dy2 = newcy - b.y;
 side2 = calcSide(dx2, dy2);
 }
 newc = new Point(newcx, newcy);
 }
 //--------------------------------------
 //calculate length of side
 private double calcSide(double dx, double dy)
 {
 return Math.sqrt(dx*dx + dy*dy);
 }

22

When the Triangle class calls the draw method, it calls this new version of
draw2ndLine and draws a line to the new third point. Further, it returns that
new point to the draw method so it will draw the closing side of the triangle
correctly.

//draws 2nd line using saved new point
 public Point draw2ndLine(Graphics g, Point b, Point c)
 {
 g.drawLine(b.x, b.y, newc.x, newc.y);
 return newc;
 }

The Triangle Drawing Program
The main program simple creates instances of the triangles you want

to draw. Then, it adds them to a Vector in the TPanel class.

public TriangleDrawing()
{
 super("Draw triangles");
 TPanel tp = new TPanel();
 t = new stdTriangle(new Point(10,10), new Point(150,50),

new Point(100, 75));
 t1 = new stdTriangle(new Point(150,100), new Point(240,40), \

new Point(175, 150));
 tp.addTriangle(t); //add to triangle list
 tp.addTriangle(t1); //in the TPanel

 getContentPane().add(tp);
 setSize(300, 200);
 setBackground(Color.white);
 setVisible(true);
}

It is the paint routine in this class that actually draws the triangles.

class TPanel extends Jpanel {
 Vector triangles;
 public TPanel() {
 triangles = new Vector(); //list of triangles
 }
//--
 public void addTriangle(Triangle t) {
 triangles.addElement(t); //add more to list
 }
//--
//draw all the triangles
 public void paint(Graphics g) {
 for (int i = 0; i < triangles.size(); i++) {
Triangle tngl = (Triangle)triangles.elementAt(i);
tngl.draw(g);

23

 }
 }
}

An example of two standard triangles is shown below in the left
window, and the same code using an isoceles triangle in the right window.

Templates and Callbacks
Design Patterns points out that Templates can exemplify the

“Hollywood Principle,” or “Don’t call us, we’ll call you.” The idea here is
that methods in the base class seem to call methods in the derived classes.
The operative word here is seem. If we consider the draw code in our base
Triangle class, we see that there are 3 method calls:

drawLine(g, p1, p2);
Point current = draw2ndLine(g, p2, p3);
closeTriangle(g, current);

Now drawLine and closeTriangle are implemented in the base class.
However, as we have seen, the draw2ndLine method is not implemented at all
in the base class, and various derived classes can implement it differently.
Since the actual methods that are being called are in the derived classes, it
appears as though they are being called from the base class.

If this idea make you uncomfortable, you will probably take solace in
recognizing that all the method calls originate from the derived class, and that
these calls move up the inheritance chain until they find the first class which
implements them. If this class is the base class, fine. If not, it could be any
other class in between. Now, when you call the draw method, the derived
class moves up the inheritance tree until it finds an implementation of draw.
Likewise, for each method called from within draw, the derived class starts at
the currently class and moves up the tree to find each method. When it gets to

24

the draw2ndLine method, it finds it immediately in the current class. So it
isn’t “really” called from the base class, but it does sort of seem that way.

Summary and Consequences
Template patterns occur all the time in OO software and are neither

complex nor obscure in intent. They are normal part of OO programming and
you shouldn’t try to make them more abstract than they actually are.

The first significant point is that your base class may only define
some of the methods it will be using, leaving the rest to be implemented in
the derived classes. The second major point is that there may be methods in
the base class which call a sequence of methods, some implemented in the
base class and some implemented in the derived class. This Template method
defines a general algorithm, although the details may not be worked out
completely in the base class.

Template classes will frequently have some abstract methods that you
must override in the derived classes, and may also have some classes with a
simple “place-holder” implementation that you are free to override where this
is appropriate. If these place-holder classes are called from another method in
the base class, then we refer to these overridable methods are “Hook”
methods.

