
1

THE STATE PATTERN

The State pattern is used when you want to have an enclosing class
switch between a number of related contained classes, and pass method calls
on to the current contained class. Design Patterns suggests that the State
pattern switches between internal classes in such a way that the enclosing
object appears to change its class. In Java, at least, this is a bit of an
exaggeration, but the actual purpose to which the classes are put can change
significantly.

Many programmers have had the experience of creating a class which
performs slightly different computations or displays different information
based on the arguments passed into the class. This frequently leads to some
sort of switch or if-else statements inside the class that determine which
behavior to carry out. It is this inelegance that the State pattern seeks to
replace.

Sample Code
Let’s consider the case of a drawing program similar to the one we

developed for the Memento class. Our program will have toolbar buttons for
Select, Rectangle, Fill, Circle and Clear.

Each one of the tool buttons does something rather different when it
is selected and you click or drag your mouse across the screen. Thus, the state

2

of the graphical editor affects the behavior the program should exhibit. This
suggests some sort of design using the State pattern.

Initially we might design our program like this, with a Mediator
managing the actions of 5 command buttons:

Mediator

Pick

Rect

Fill

Circle

Clear

Screen

Mouse

However, this initial design puts the entire burden of maintaining the
state of the program on the Mediator, and we know that the main purpose of a
Mediator is to coordinate activities between various controls, such as the
buttons. Keeping the state of the buttons and the desired mouse activity inside
the Mediator can make it unduly complicated as well as leading to a set of if
or switch tests which make the program difficult to read and maintain.

Further, this set of large, monolithic conditional statements might
have to be repeated for each action the Mediator interprets, such as mouseUp,
mouseDrag, rightClick and so forth. This makes the program very hard to
read and maintain.

Instead, let’s analyze the expected behavior for each of the buttons:

1. If the Pick button is selected, clicking inside a drawing element
should cause it to be highlighted or appear with “handles.” If the
mouse is dragged and a drawing element is already selected, the
element should move on the screen.

2. If the Rect button is selected, clicking on the screen should cause
a new rectangle drawing element to be created.

3

3. If the Fill button is selected and a drawing element is already
selected, that element should be filled with the current color. If
no drawing is selected, then clicking inside a drawing should fill
it with the current color.

4. If the Circle button is selected, clicking on the screen should
cause a new circle drawing element to be created.

5. If the Clear button is selected, all the drawing elements are
removed.

There are some common threads among several of these actions we
should explore. Four of them use the mouse click event to cause actions. One
uses the mouse drag event to cause an action. Thus, we really want to create a
system that can help us redirect these events based on which button is
currently selected.

Let’s consider creating a State object that handles mouse activities:

public class State {
public void mouseDown(int x, int y){}
public void mouseUp(int x, int y){}
public void mouseDrag(int x, int y){}
}

We’ll include the mouseUp event in case we need it later. Since none
of the cases we’ve described need all of these events, we’ll give our base
class empty methods rather than creating an abstract base class. Then we’ll
create 4 derived State classes for Pick, Rect, Circle and Fill and put instances
of all of them inside a StateManager class which sets the current state and
executes methods on that state object. In Design Patterns, this StateManager
class is referred to as a Context. This object is illustrated below:

4

StateManager

State

Pick Rect Fill Circle

currentState

A typical State object simply overrides those event methods that it
must handle specially. For example, this is the complete Rectangle state
object:

public class RectState extends State
{
 private Mediator med; //save the Mediator
 public RectState(Mediator md) {
 med = md;
 }
 //-------------------------------------
 //create a new Rectangle where mouse clicks
 public void mouseDown(int x, int y) {
 med.addDrawing(new visRectangle(x, y));
 }
}

The RectState object simply tells the Mediator to add a rectangle
drawing to the drawing list. Similarly, the Circle state object tells the
Mediator to add a circle to the drawin list:

public class CircleState extends State
{
 private Mediator med; //save Mediator
 public CircleState(Mediator md) {

5

 med = md;
 }
 //--------------------------------
 //Draw circle where mouse clicks
 public void mouseDown(int x, int y) {
 med.addDrawing(new visCircle(x, y));
 }
}

The only tricky button is the Fill button, because we have defined
two actions for it.

1. If an object is already selected, fill it.

2. If the mouse is clicked inside an object, fill that one.

In order to carry out these tasks, we need to add the select method to
our base State class. This method is called when each tool button is selected:

public class State
{
public void mouseDown(int x, int y){}
public void mouseUp(int x, int y){}
public void mouseDrag(int x, int y){}
public void select(Drawing d, Color c){}
}

The Drawing argument is either the currently selected Drawing or
null if none is selcted, and the color is the current fill color. In this simple
program, we have arbitrarily set the fill color to red. So our Fill state class
becomes:

public class FillState extends State
{
 private Mediator med; //save Mediator
 private Color color; //save current color
 public FillState(Mediator md) {
 med = md;
 }
//-------------------------------
 //Fill drawing if selected
 public void select(Drawing d, Color c) {
 color = c;
 if(d!= null)
 {
 d.setFill(c); //fill that drawing
 }
 }
 //---------------------------------
 //Fill drawing if you click inside one
 public void mouseDown(int x, int y) {
 Vector drawings = med.getDrawings();
 for(int i=0; i< drawings.size(); i++)

6

 {
 Drawing d = (Drawing)drawings.elementAt(i);
 if(d.contains(x, y))
 d.setFill(color); //fill drawing
 }
 }
}

Switching Between States
Now that we have defined how each state behaves when mouse

events are sent to it, we need to discuss how the StateManager switches
between states; we simply set the currentState variable to the state is indicated
by the button that is selected.

import java.awt.*;

public class StateManager
{
 private State currentState;
 RectState rState; //states are kept here
 ArrowState aState;
 CircleState cState;
 FillState fState;

 public StateManager(Mediator med)
 {
 rState = new RectState(med); //create instances
 cState = new CircleState(med); //of each state
 aState = new ArrowState(med);
 fState = new FillState(med);
 currentState = aState;
 }
//These methods are called when the tool buttons
//are selected
 public void setRect() { currentState = rState; }
 public void setCircle(){ currentState = cState; }
 public void setFill() { currentState = fState; }
 public void setArrow() { currentState = aState; }

Note that in this version of the StateManager, we create an instance
of each state during the constructor and copy the correct one into the state
variable when the set methods are called. It would also be possible to use a
Factory to create these states on demand. This might be advisable if there are
a large number of states which each consume a fair number of resources.

The remainder of the state manager code simply calls the methods of
whichever state object is current. This is the critical piece -- there is no

7

conditional testing. Instead, the correct state is already in place and its
methods are ready to be called.

 public void mouseDown(int x, int y) {
 currentState.mouseDown(x, y);
 }
 public void mouseUp(int x, int y) {
 currentState.mouseUp(x, y);
 }
 public void mouseDrag(int x, int y) {
 currentState.mouseDrag(x, y);
 }
 public void select(Drawing d, Color c) {
 currentState.select(d, c);
 }
}

How the Mediator Interacts with the State Manager
We mentioned that it is clearer to separate the state management from

the Mediator’s button and mouse event management. The Mediator is the
critical class, however, since it tells the StateManager when the current
program state changes. The beginning part of the Mediator illustrates how
this state change takes place:

public Mediator() {
 startRect = false;
 dSelected = false;
 drawings = new Vector();
 undoList = new Vector();
 stMgr = new StateManager(this);
}
//---
public void startRectangle() {
 stMgr.setRect(); //change to rectangle state
 arrowButton.setSelected(false);
 circButton.setSelected(false);
 fillButton.setSelected(false);
 }
//---
public void startCircle() {
 stMgr.setCircle(); //change to circle state
 rectButton.setSelected(false);
 arrowButton.setSelected(false);
 fillButton.setSelected(false);
}

These startXxx methods are called from the Execute methods of each
button as a Command object.

8

Consequences of the State Pattern
1. The State pattern localizes state-specific behavior in an individual class

for each state, and puts all the behavior for that state in a single object.

2. It eliminates the necessity for a set of long, look-alike conditional
statements scattered through the program’s code.

3. It makes transition explicit. Rather than having a constant that specifies
which state the program is in, and that may not always be checked
correctly, this makes the change explicit by copying one of the states to
the state variable.

4. State objects can be shared if they have no instance variables. Here only
the Fill object has instance variables, and that color could easily be made
an argument instead.

5. This approach generates a number of small class objects, but in the
process, simplifies and clarifies the program.

6. In Java, all of the States must inherit from a common base class, and they
must all have common methods, although some of those methods can be
empty. In other languages, the states can be implemented by function
pointers with much less type checking, and, of course, greater chance of
error.

State Transitions
The transition between states can be specified internally or externally.

In our example, the Mediator tells the StateManager when to switch between
states. However, it is also possible that each state can decide automatically
what each successor state will be. For example, when a rectangle or circle
drawing object is created, the program could automatically switch back to the
Arrow-object State.

Thought Questions
1. Rewrite the StateManager to use a Factory pattern to produce the

states on demand.

2. While visual graphics programs provide obvious examples of
State patterns, Java server programs can benefit by this approach.
Outline a simple server which uses a state pattern.

