17

THE INTERPRETER PATTERN

Some programs benefit from having alanguage to describe
operations they can perform. The Interpreter pattern generally describes
defining agrammar for that language and using that grammar to interpret
statements in that language.

M otivation

When a program presents a number of different, but somewhat
similar cases it can deal with, it can be advantageous to use a simple language
to describe these cases and then have the program interpret that language.
Such cases can be as simple as the sort of Macro language recording facilities
anumber of office suite programs provide, or as complex as Visua Basic for
Applications (VBA). VBA isnot only included in Microsoft Office products,
but can be embedded in any number of third party products quite ssmply.

One of the problems we must deal with is how to recognize when a
language can be helpful. The Macro language recorder simply records menu
and keystroke operations for later playback and just barely qualifiesasa
language; it may not actually have awritten form or grammar. Languages
such as VBA, on the other hand, are quite complex, but are far beyond the
capabilities of the individual application developer. Further, embedding
commercial languages such as VBA, Javaor SmallTak usually require
substantial licensing fees, which make them less attractive to all but the
largest developers.

Applicability

Asthe Small Talk Companion notes, recognizing cases where an
Interpreter can be helpful is much of the problem, and programmers without
formal language/compiler training frequently overlook this approach. There
are not large numbers of such cases, but there are two general places where
languages are applicable:

1. When the program must parse an algebraic string. This caseisfairly
obvious. The program is asked to carry out its operations based on a
computation where the user enters an equation of some sort. This
frequently occurs in mathematical-graphics programs, where the program

18

renders a curve or surface based on any equation it can evaluate.
Programs like Mathematica and graph drawing packages such as Origin
work in thisway.

2. When the program must produce varying kinds of output. This case
isalittle less obvious, but far more useful. Consider a program that can
display columns of datain any order and sort them in various ways.
These programs are frequently referred to as Report Generators, and
while the underlying data may be stored in arelational database, the user
interface to the report program is usually much simpler then the SQL
language which the database uses. In fact, in some cases, the smple
report language may be interpreted by the report program and trandated

into SQL.

Sample Code

Let’s consider asimplified report generator that can operate on 5
columns of datain atable and return various reports on these data. Suppose
we have the following sort of results from a swimming competition:

Amanda McCart hy 12 WCA 29. 28
Jam e Fal co 12 HNHS 29. 80
Meaghan O Donnel | 12 EDST 30. 00
G eer G bbs 12 CDeV 30.04
Rhi annon Jeffrey 11 wWww 30. 04
Sophi e Connol |y 12 WAC 30. 05
Dana Hel yer 12 ARAC 30. 18

where the 5 columns are frname, Iname, age, club and time. If we consider
the complete race results of 51 swimmers, we realize that it might be
convenient to sort these results by club, by last name or by age. Since there
are anumber of useful reports we could produce from these data in which the
order of the columns changes as well as the sorting, alanguage is one useful
way to handle these reports.

We Il define a very ssimple non-recursive grammar of the sort

Print | name frname club tine sortby club thenby time

For the purposes of this example, we define the 3 verbs shown above:

Print
Sor t by
Thenby

19

and the 5 column names we listed earlier:

Fr name
Lnanme
Age

C ub
Ti me

For convenience, we'll assume that the language is case insensitive.
We Il aso note that the smple grammar of this language is punctuation free,
and amounts in brief to

Print var[var] [sortby var [thenby var]]

Finally, thereis only one main verb and while each statement is a declaration,
thereis no assignment statement or computational ability in this grammar.

Inter preting the Language
Interpreting the language takes place in three steps

1. Parsing the language symbols into tokens.
2. Reducing the tokensinto actions.
3. Executing the actions.

We parse the language into tokens by smply scanning each statement
with a StringTokenizer and then substituting a number for each word. Usualy
parsers push each parsed token onto a stack -- we will use that technique here.
We implement the Stack class using a V ector, where we have push, pop, top
and nextTop methods to examine and manipulate the stack contents.

After parsing, our stack could look like this:

Type Token

Var Ti me <-top of stack
Verb Thenby

Var C ub

Ver b Sor t by

Var Ti me

Var C ub

20

Var Fr nane

verb Lname

However, we quickly realize that the “verb” thenby has no real
meaning other than clarification, and it is more likely that we'd parse the
tokens and skip the thenby word altogether. Our initial stack then, looks like
this
Ti me
C ub
Sor t by
Ti me
C ub
Fr nanme
Lname
Print

ObjectsUsed in Parsing

Actually, we do not push just a numeric token onto the stack, but a
ParseObject which has the both a type and a value property:

public class Parse(bj ect

public static final int VERB=1000, VAR = 1010,
MULTVAR = 1020;
protected int val ue;
protected int type;

public int getValue() {return value;}
public int getType() {return type;}

These objects can take on the type VERB or VAR. Then we extend
this object into ParseVerb and ParseVar objects, whose value fields can take
on PRINT or SORT for ParseVerb and FRNAME, LNAME, etc. for
ParseVar. For later use in reducing the parse list, we then derive Print and
Sort objects from ParseVerb.

This gives us a simple hierachy:

ParseObject

v v

ParseVerb

| '

ParseVar

The parsing processis just the following smple code, using the
StringTokenizer and the parse objects:

public Parser(String |ine) {
stk = new Stack();
actionLi st = new Vector();

StringTokeni zer tok = new StringTokeni zer(line);
whi | e(t ok. hashor eEl enent s())
Par se(hj ect token = tokenize(tok. next Token());
if(token !'= null)
st k. push(token);

}
}
e R T
private ParseObj ect tokenize(String s) {
Par seCbj ect obj = getVerb(s);
if (obj == null)
obj = getVar(s);
return obj;
}
e T

private ParseVerb getVerb(String s) {
Par seVerb v;
v = new ParseVerb(s);
if (v.isLegal ())
return v.getVerb(s);
el se
return null;

21

22

private ParseVar getVar(String s) {
Par seVar v;
v = new ParseVar (s);
if (v.isLegal ())
return v;
el se
return null;
}

The ParseVerb and ParseVar classes return objects with isLegal set to
true if they recognize the word.

public class ParseVerb extends Parse(j ect
{
static public final int PRI NT=100,
SORTBY=110, THENBY=120;
protected Vector args;

public ParseVerb(String s) {

args = new Vector();

s = s.tolLower Case();

value = -1;

type = VERB;

if (s.equals("print")) value = PRINT,;

if (s.equal s("sortby")) value = SORTBY;
}

Reducing the Par sed Stack
The tokens on the stack have the form

Var
Var
Ver b
Var
Var
Var
Var
Ver b

We reduce the stack atoken at atime, folding successive Varsinto a
MultVar class until the arguments are folded into the verb objects.

23

Verb
Time

Multvar

-

Var
Club

Verb

Verb
SortBy

Var
Time

r

Multvar

Var
Club

Multvar

var | P
Frname

Verb

Var
Lname

When the stack reducesto a verb, this verb and its arguments are
placed in an action list; when the stack is empty the actions are executed.

This entire processis carried out by creating a Parser classthat isa
Command object, and executing it when the Go button is pressed on the user
interface:

public void actionPerfornmed(Acti onEvent e)

{

Parser p = new Parser(tx.getText());
p. set Dat a(kdata, ptable);
p. Execute();

The parser itself just reduces the tokens as we show above. It checks for
various pairs of tokens on the stack and reduces each pair to a single one for
each of five different cases.

24

/I execut es parse of conmand |ine
public void Execute() {
whi | e(st k. hashor eEl enent s()) {
i f(topStack(Parseject. VAR, Parse(bject. VAR))

//reduce (Var Var) to Miltvar
ParseVar v = (ParseVar)stk. pop();
ParseVar vl = (ParseVar)stk. pop();
Mul tVar nv = new Ml t Var (v1, v);
st k. push(nv);

//reduce MILLTVAR VAR to MULTVAR
i f(topStack(Parsehject. MILTVAR, Parse(oject. VAR))

MultVar nv = new MultVar();
Mul t Var mvo = (Ml tVar)stk. pop();
ParseVar v = (ParseVar)stk. pop();

nv. add(v) ;
Vector nmvec = nvo. getVector();
for (int i = 0; i< nvec.size(); i++)

nv. add((ParseVar) nvec. el ement At (i));
st k. push(nv);

}
i f(topStack(Parsehject. VAR Parsehj ect. MILTVAR))

{

//reduce (Miultvar Var) to Ml tvar
ParseVar v = (ParseVar)stk. pop();
Mil t Var v (Mul t Var) st k. pop();
nv. add(v) ;
st k. push(nv);

//reduce Verb Var to Verb containing vars
if (topStack(ParseChject. VAR ParseObject.VERB))

{
addAr gsToVer b() ;

//reduce Verb MultVar to Verb containing vars
if (topStack(Parsehject. MILTVAR, Parse(oject.VERB))

{
addAr gsToVer b() ;

/I nmove top verb to action list
if(stk.top().getType() == Parse(hject. VERB)
{

actionLi st. addEl enent (st k. pop());

}

Y/ while

/I now execute the verbs

for (int i =0; i< actionList.size() ; i++) {

Verb v = (Verb)actionList.elenmentAt(i);

25

v. Execut e();
| }
We also make the Print and Sort verb classes Command objects and Execute
them one by one as the action list is enumerated.

The final visual program is shown below:

E;g Interpreter Demo [_ (O]

P oGO

iprint Iname frname time sothy Iname

\Arnent Kaityn 30093
Brookman Rachel 30.51
Brudvig karin 31.84
Bullock Morgan 33.33
Coelho Colleen 32.4
Coia Micole 31.54
Colling kathy 33.11
Connolly Sophie 30.05
Cooke Diana 32.33
Cowles Lindsay 31.749
Danais kKarleen 30.7
Ducharme Michelle 30.51
Duffy Annie 31.9

Duffy Katie 34.24 -

|»

Consequences of the Interpreter Pattern

Whenever you introduce an interpreter into a program, you need to
provide a simple way for the program user to enter commands in that
language. It can be as ssimple as the Macro record button we noted earlier, or
it can be an editable text field like the one in the program above.

However, introducing alanguage and its accompanying grammar
also requires fairly extensive error checking for misspelled terms or
misplaced grammeatical elements. This can easily consume a great deal of
programming effort unless some template code is available for implementing
this checking. Further, effective methods for notifying the users of these
errors are not easy to design and implement.

In the Interpreter example above, the only error handling is that
keywords that are not recognized are not converted to ParseObjects and
pushed onto the stack. Thus, nothing will happen, because the resulting stack

26

sequence probably cannot be parsed successfully, or if it can, the item
represented by the misspelled keyword will not be included.

Y ou can also consider generating a language automatically from a
user interface of radio and command buttons and list boxes. While it may
seem that having such an interface obviates the necessity for alanguage at all,
the same requirements of sequence and computation still apply. When you
have to have away to specify the order of sequential operations, alanguageis
agood way to do so, even if the language is generated from the user interface.

The Interpreter pattern has the advantage that you can extend or
revise the grammar fairly easily one you have built the general parsing and
reduction tools. Y ou can also add new verbs or variables quite easily once the
foundation is constructed.

In the simple parsing scheme we show in the Parser class above,
there are only 6 casesto consider, and they are shown as a series of smple if
statements. If you have many more than that, Design Patter ns suggests that
you create a class for each one of them. This again makes language extension
easier, but has the disadvantage of proliferating lots of similar little classes.

Finally, as the syntax of the grammar becomes more complex, you
run the risk of creating a hard to maintain program.

While interpreters are not all that common in solving general
programming problems, the Iterator pattern we take up next is one of the most
common ones you'll be using.

