
17

THE INTERPRETER PATTERN

Some programs benefit from having a language to describe
operations they can perform. The Interpreter pattern generally describes
defining a grammar for that language and using that grammar to interpret
statements in that language.

Motivation
When a program presents a number of different, but somewhat

similar cases it can deal with, it can be advantageous to use a simple language
to describe these cases and then have the program interpret that language.
Such cases can be as simple as the sort of Macro language recording facilities
a number of office suite programs provide, or as complex as Visual Basic for
Applications (VBA). VBA is not only included in Microsoft Office products,
but can be embedded in any number of third party products quite simply.

One of the problems we must deal with is how to recognize when a
language can be helpful. The Macro language recorder simply records menu
and keystroke operations for later playback and just barely qualifies as a
language; it may not actually have a written form or grammar. Languages
such as VBA, on the other hand, are quite complex, but are far beyond the
capabilities of the individual application developer. Further, embedding
commercial languages such as VBA, Java or SmallTalk usually require
substantial licensing fees, which make them less attractive to all but the
largest developers.

Applicability
As the SmallTalk Companion notes, recognizing cases where an

Interpreter can be helpful is much of the problem, and programmers without
formal language/compiler training frequently overlook this approach. There
are not large numbers of such cases, but there are two general places where
languages are applicable:

1. When the program must parse an algebraic string. This case is fairly
obvious. The program is asked to carry out its operations based on a
computation where the user enters an equation of some sort. This
frequently occurs in mathematical-graphics programs, where the program

18

renders a curve or surface based on any equation it can evaluate.
Programs like Mathematica and graph drawing packages such as Origin
work in this way.

2. When the program must produce varying kinds of output. This case
is a little less obvious, but far more useful. Consider a program that can
display columns of data in any order and sort them in various ways.
These programs are frequently referred to as Report Generators, and
while the underlying data may be stored in a relational database, the user
interface to the report program is usually much simpler then the SQL
language which the database uses. In fact, in some cases, the simple
report language may be interpreted by the report program and translated
into SQL.

Sample Code
Let’s consider a simplified report generator that can operate on 5

columns of data in a table and return various reports on these data. Suppose
we have the following sort of results from a swimming competition:

Amanda McCarthy 12 WCA 29.28
Jamie Falco 12 HNHS 29.80
Meaghan O'Donnell 12 EDST 30.00
Greer Gibbs 12 CDEV 30.04
Rhiannon Jeffrey 11 WYW 30.04
Sophie Connolly 12 WAC 30.05
Dana Helyer 12 ARAC 30.18

where the 5 columns are frname, lname, age, club and time. If we consider
the complete race results of 51 swimmers, we realize that it might be
convenient to sort these results by club, by last name or by age. Since there
are a number of useful reports we could produce from these data in which the
order of the columns changes as well as the sorting, a language is one useful
way to handle these reports.

We’ll define a very simple non-recursive grammar of the sort

Print lname frname club time sortby club thenby time

For the purposes of this example, we define the 3 verbs shown above:

Print
Sortby
Thenby

19

and the 5 column names we listed earlier:

Frname
Lname
Age
Club
Time

For convenience, we’ll assume that the language is case insensitive.
We’ll also note that the simple grammar of this language is punctuation free,
and amounts in brief to

Print var[var] [sortby var [thenby var]]

Finally, there is only one main verb and while each statement is a declaration,
there is no assignment statement or computational ability in this grammar.

Interpreting the Language
Interpreting the language takes place in three steps

1. Parsing the language symbols into tokens.

2. Reducing the tokens into actions.

3. Executing the actions.

We parse the language into tokens by simply scanning each statement
with a StringTokenizer and then substituting a number for each word. Usually
parsers push each parsed token onto a stack -- we will use that technique here.
We implement the Stack class using a Vector, where we have push, pop, top
and nextTop methods to examine and manipulate the stack contents.

After parsing, our stack could look like this:

Type Token

Var Time <-top of stack

Verb Thenby

Var Club

Verb Sortby

Var Time

Var Club

20

Var Frname

verb Lname

However, we quickly realize that the “verb” thenby has no real
meaning other than clarification, and it is more likely that we’d parse the
tokens and skip the thenby word altogether. Our initial stack then, looks like
this

Time
Club
Sortby
Time
Club
Frname
Lname
Print

Objects Used in Parsing
Actually, we do not push just a numeric token onto the stack, but a

ParseObject which has the both a type and a value property:

public class ParseObject
{
 public static final int VERB=1000, VAR = 1010,

MULTVAR = 1020;
 protected int value;
 protected int type;

 public int getValue() {return value;}
 public int getType() {return type;}
}

These objects can take on the type VERB or VAR. Then we extend
this object into ParseVerb and ParseVar objects, whose value fields can take
on PRINT or SORT for ParseVerb and FRNAME, LNAME, etc. for
ParseVar. For later use in reducing the parse list, we then derive Print and
Sort objects from ParseVerb.

This gives us a simple hierachy:

21

ParseObject

ParseVerb
ParseVar

Print Sort

The parsing process is just the following simple code, using the
StringTokenizer and the parse objects:

public Parser(String line) {
 stk = new Stack();
 actionList = new Vector();

 StringTokenizer tok = new StringTokenizer(line);
 while(tok.hasMoreElements()) {
 ParseObject token = tokenize(tok.nextToken());
 if(token != null)
 stk.push(token);
 }
 }
//------------------------------------
private ParseObject tokenize(String s) {
 ParseObject obj = getVerb(s);
 if (obj == null)
 obj = getVar(s);
 return obj;
}
//--
 private ParseVerb getVerb(String s) {
 ParseVerb v;
 v = new ParseVerb(s);
 if (v.isLegal())
 return v.getVerb(s);
 else
 return null;
}

22

//--
private ParseVar getVar(String s) {
 ParseVar v;
 v = new ParseVar(s);
 if (v.isLegal())
 return v;
 else
 return null;
}

The ParseVerb and ParseVar classes return objects with isLegal set to
true if they recognize the word.

public class ParseVerb extends ParseObject
{
 static public final int PRINT=100,

SORTBY=110, THENBY=120;
 protected Vector args;

public ParseVerb(String s) {
 args = new Vector();
 s = s.toLowerCase();
 value = -1;
 type = VERB;
 if (s.equals("print")) value = PRINT;
 if (s.equals("sortby")) value = SORTBY;
}

Reducing the Parsed Stack
The tokens on the stack have the form

Var
Var
Verb
Var
Var
Var
Var
Verb

We reduce the stack a token at a time, folding successive Vars into a
MultVar class until the arguments are folded into the verb objects.

23

Verb
Time

Var
Club

Verb
SortBy

Var
Time

Var
Club

Var
Frname

Var
Lname

MultVar

Verb

MultVar

MultVar

Verb

When the stack reduces to a verb, this verb and its arguments are
placed in an action list; when the stack is empty the actions are executed.

This entire process is carried out by creating a Parser class that is a
Command object, and executing it when the Go button is pressed on the user
interface:

public void actionPerformed(ActionEvent e)
 {
 Parser p = new Parser(tx.getText());
 p.setData(kdata, ptable);
 p.Execute();
 }

The parser itself just reduces the tokens as we show above. It checks for
various pairs of tokens on the stack and reduces each pair to a single one for
each of five different cases.

24

//executes parse of command line
 public void Execute() {
 while(stk.hasMoreElements()) {
 if(topStack(ParseObject.VAR, ParseObject.VAR))
 {
 //reduce (Var Var) to Multvar
 ParseVar v = (ParseVar)stk.pop();
 ParseVar v1 = (ParseVar)stk.pop();
 MultVar mv = new MultVar(v1, v);
 stk.push(mv);
 }
 //reduce MULTVAR VAR to MULTVAR
 if(topStack(ParseObject.MULTVAR, ParseObject.VAR))
 {
 MultVar mv = new MultVar();
 MultVar mvo = (MultVar)stk.pop();
 ParseVar v = (ParseVar)stk.pop();
 mv.add(v);
 Vector mvec = mvo.getVector();
 for (int i = 0; i< mvec.size(); i++)
 mv.add((ParseVar)mvec.elementAt(i));
 stk.push(mv);
 }
 if(topStack(ParseObject.VAR, ParseObject.MULTVAR))
 {
 //reduce (Multvar Var) to Multvar
 ParseVar v = (ParseVar)stk.pop();
 MultVar mv = (MultVar)stk.pop();
 mv.add(v);
 stk.push(mv);
 }
 //reduce Verb Var to Verb containing vars
 if (topStack(ParseObject.VAR, ParseObject.VERB))
 {
 addArgsToVerb();
 }
 //reduce Verb MultVar to Verb containing vars
 if (topStack(ParseObject.MULTVAR, ParseObject.VERB))
 {
 addArgsToVerb();
 }
 //move top verb to action list
 if(stk.top().getType() == ParseObject.VERB)
 {
 actionList.addElement(stk.pop());
 }

 }//while
 //now execute the verbs
 for (int i =0; i< actionList.size() ; i++) {
 Verb v = (Verb)actionList.elementAt(i);

25

v.Execute();
 }
 }

We also make the Print and Sort verb classes Command objects and Execute
them one by one as the action list is enumerated.

The final visual program is shown below:

Consequences of the Interpreter Pattern
Whenever you introduce an interpreter into a program, you need to

provide a simple way for the program user to enter commands in that
language. It can be as simple as the Macro record button we noted earlier, or
it can be an editable text field like the one in the program above.

However, introducing a language and its accompanying grammar
also requires fairly extensive error checking for misspelled terms or
misplaced grammatical elements. This can easily consume a great deal of
programming effort unless some template code is available for implementing
this checking. Further, effective methods for notifying the users of these
errors are not easy to design and implement.

In the Interpreter example above, the only error handling is that
keywords that are not recognized are not converted to ParseObjects and
pushed onto the stack. Thus, nothing will happen, because the resulting stack

26

sequence probably cannot be parsed successfully, or if it can, the item
represented by the misspelled keyword will not be included.

You can also consider generating a language automatically from a
user interface of radio and command buttons and list boxes. While it may
seem that having such an interface obviates the necessity for a language at all,
the same requirements of sequence and computation still apply. When you
have to have a way to specify the order of sequential operations, a language is
a good way to do so, even if the language is generated from the user interface.

The Interpreter pattern has the advantage that you can extend or
revise the grammar fairly easily one you have built the general parsing and
reduction tools. You can also add new verbs or variables quite easily once the
foundation is constructed.

In the simple parsing scheme we show in the Parser class above,
there are only 6 cases to consider, and they are shown as a series of simple if
statements. If you have many more than that, Design Patterns suggests that
you create a class for each one of them. This again makes language extension
easier, but has the disadvantage of proliferating lots of similar little classes.

Finally, as the syntax of the grammar becomes more complex, you
run the risk of creating a hard to maintain program.

While interpreters are not all that common in solving general
programming problems, the Iterator pattern we take up next is one of the most
common ones you’ll be using.

