
2

CHAIN OF RESPONSIBILITY

The Chain of Responsibility pattern allows a number of classes to
attempt to handle a request, without any of them knowing about the
capabilities of the other classes. It provides a loose coupling between these
classes; the only common link is the request that is passed between them. The
request is passed along until one of the classes can handle it.

One example of such a chain pattern is a Help system, where every
screen region of an application invites you to seek help, but in which there are
window background areas where more generic help is the only suitable result.
When you select an area for help, that visual control forwards its ID or name
to the chain. Suppose you selected the “New” button.  If the first module can
handle the New button, it displays the help message. If not, it forwards the
request to the next module. Eventually, the message is forwarded to an “All
buttons” class that can display a general message about how buttons work. If
there is no general button help, the message is forwarded to the general help
module that tells you how the system works in general. If that doesn’t exist,
the message is lost and no information is displayed. This is illustrated below.

File button All buttons

All controls General help

New button

There are two significant points we can observe from this example;
first, the chain is organized from most specific to most general, and that there
is no guarantee that the request will produce a response in all cases.

Applicability
We use the Chain of Responsibility when

• You have more than one handler that can handle a request and
there is no way to know which handler to use. The handler must
be determined automatically by the chain.



3

• You want to issue a request to one of several objects without
specifying which one explicitly.

• You want to be able to modify the set of objects dynamically that
can handle requests.

Sample Code
Let’s consider a simple system for display the results of typed in

requests. These requests can be

• Image filenames

• General filenames

• Colors

• Other commands

In three cases, we can display a concrete result of the request, and in
the last case, we can only display the request text itself.

In the above example system, we type in “Mandrill” and see a display
of the image Mandrill.jpg. Then, we type in “FileList” and that filename is
highlighted in the center list box.  Next, we type in “blue” and that color is
displayed in the lower center panel. Finally, if we type in anything that is



4

neither a filename nor a color, that text is displayed in the final, right-hand list
box. This is shown below:

Image 
file

Color 
name

File 
name General  Command

To write this simple chain of responsibility program, we start with an
abstract Chain class:

public interface Chain
{
public abstract void addChain(Chain c);
public abstract void sendToChain(String mesg);
public Chain getChain();
}

The addChain method adds another class to the chain of classes. The
getChain method returns the current class to which messages are being
forwarded. These two methods allow us to modify the chain dynamically and
add additional classes in the middle of an existing chain. The sendToChain
method forwards a message to the next object in the chain.

Our Imager class is thus derived from JPanel and implements our
Chain interface. It takes the message and looks for “.jpg” files with that root
name. If it finds one, it displays it.

public class Imager extends JPanel
implements Chain

{
   private Chain nextChain;
   private Image img;
   private boolean loaded;

public void addChain(Chain c) {
   nextChain = c;    //next in chain of resp
}
//------------------------------------------
public void sendToChain(String mesg)
{
   //if there is a JPEG file with this root name
   //load it and display it.
   if (findImage(mesg))
      loadImage(mesg + ".jpg");
   else
   //Otherwise, pass request along chain
   nextChain.sendToChain(mesg);



5

}
//------------------------------------------
public Chain getChain() {
   return nextChain;
}
//------------------------------------------
public void paint(Graphics g) {
   if (loaded)       {
      g.drawImage(img, 0, 0, this);
      }
}

In a similar fashion, the ColorImage class simply interprets the
message as a color name and displays it if it can. This example only interprets
3 colors, but you could implement any number:

public void sendToChain(String mesg) {
 Color c = getColor(mesg);
 if(c != null)    {
   setBackground(c);
   repaint();
   }
 else  {
    if (nextChain != null)
       nextChain.sendToChain(mesg);
 }
}
//-----------------------------------
private Color getColor(String mesg) {
   String lmesg = mesg.toLowerCase();
   Color c = null;

   if(lmesg.equals("red"))
      c = Color.red;
   if(lmesg.equals("blue"))
      c = Color.blue;
   if(lmesg.equals("green"))
      c= Color.green;
   return c;
}

The List Boxes
Both the file list and the list of unrecognized commands are JList

boxes. Since we developed an adapter JawtList in the previous chapter to give
JList a simpler interface, we’ll use that adapter here. The RestList class is the
end of the chain, and any command that reaches it is simply displayed in the
list. However, to allow for convenient extension, we are able to forward the
message to other classes as well.

public class RestList extends JawtList



6

        implements Chain
{
private Chain nextChain = null;
//--------------------------------------
  public RestList()    {
   super(10);     //arg to JawtList
   setBorder(new LineBorder(Color.black));
  }
  //--------------------------------------
  public void addChain(Chain c) {
    nextChain = c;
  }
  //--------------------------------------
  public void sendToChain(String mesg) {
    add(mesg);        //this is the end of the chain
    repaint();
    if(nextChain != null)
      nextChain.sendToChain(mesg);
  }
  //--------------------------------------
  public Chain getChain() {
    return nextChain;
  }
}

The FileList class is quite similar and can be derived from the
RestList class, to avoid replicating the addChain and getChain methods. The
only differences are that it loads a list of the files in the current directory into
the list when initialized, and looks for one of those files when it receives a
request.

public class FileList extends RestList
{
   String files[];
   private Chain nextChain;
//-----------------------------------------
   public FileList()
   {
   super();
   File dir = new File(System.getProperty("user.dir"));
  files = dir.list();
  for(int i = 0; i<files.length; i++)
  add(files[i]);
 }
//---------------------------------------
public void sendToChain(String mesg)
   {
   boolean found = false;
   int i = 0;
   while ((! found) && (i < files.length))    {



7

      XFile xfile = new XFile(files[i]);
      found = xfile.matchRoot(mesg);
      if (! found) i++;
   }
   if(found)       {
      setSelectedIndex(i);
      }
   else    {
      if(nextChain != null)
         nextChain.sendToChain(mesg);
   }
 }

The Xfile class we introduce above is a simple child of the File class
that contains a matchRoot method to compare a string to the root name of a
file.

Finally, we link these classes together in the constructor to form the
Chain:

//set up the chain of responsibility
   sender.addChain(imager);
   imager.addChain(colorImage);
   colorImage.addChain(fileList);
   fileList.addChain(restList);

This program is called Chainer.java on your CD-ROM.

A Chain or a Tree?
Of course, a Chain of Responsibility does not have to be linear. The

Smalltalk Companion suggests that it is more generally a tree structure with a
number of specific entry points all pointing upward to the most general node.



8

General 
help

Window 
help

Button help Menu help
List box 

help

File NewOK Quit Files Colors

However, this sort of structure seems to imply that each button, or is
handler, knows where to enter the chain. This can complicate the design in
some cases, and may preclude the need for the chain at all.

Another way of handling a tree-like structure is to have a single entry
point that branches to the specific button, menu or other widget types, and
then “un-branches” as above to more general help cases. There is little reason
for that complexity -- you could align the classes into a single chain, starting
at the bottom, and going left to right and up a row at a time until the entire
system had been traversed, as shown below:



9

General 
help

Window 
help

Button help Menu help
List box 

help

File NewOK Quit Files Colors

Kinds of Requests
The request or message passed along the Chain of Responsibility may

well be a great deal more complicated than just the string that we
conveniently used on this example. The information could include various
data types or a complete object with a number of methods. Since various
classes along the chain may use different properties of such a request object,
you might end up designing an abstract Request type and any number of
derived classes with additional methods.

Examples in Java
The most obvious example of the Chain of Responsibility is the class

inheritance structure itself. If you call for a method to be executed in a deeply
derived class, that method is passed up the inheritance chain until the first
parent class containing that method is found. The fact that further parents
contain other implementations of that method does not come into play.



10

Consequences of the Chain of Responsibility
1. The main purpose for this pattern, like a number of others, is to reduce

coupling between objects. An object only needs to know how to forward
the request to other objects.

2. This approach also gives you added flexibility in distributing
responsibilities between objects. Any object can satisfy some or all of the
requests, and you can change both the chain and the responsibilities at run
time.

3. An advantage is that there may not be any object that can handle the
request, however, the last object in the chain may simply discard any
requests it can’t handle.

4. Finally, since Java can not provide multiple inheritance, the basic Chain
class needs to be an interface rather than an abstract class, so that the
individual objects can inherit from another useful hierarchy, as we did
here by deriving them all from JPanel. This disadvantage of this approach
is that you often have to implement the linking, sending and forwarding
code in each module separately.


